m
m
Line 13: Line 13:
  
 
:<math> rep_T [x(t)] = x(t)* \sum_{k=-\infty}^{\infty}\delta(t-kT) </math>.........
 
:<math> rep_T [x(t)] = x(t)* \sum_{k=-\infty}^{\infty}\delta(t-kT) </math>.........
:<math> comb_T[x(t)] = x(t) . \mathrm{P_T} (t) </math>
+
<math> comb_T[x(t)] = x(t) . \sum_{k=-\infty}^{\infty}\delta(t-kT) = x(t) . \mathrm{P_T} (t) </math>
  
 
:<math> rep_T [x(t)] \iff \frac{1}{T}comb_\frac{1}{T} [ \mathrm{X}(f)] </math>......................
 
:<math> rep_T [x(t)] \iff \frac{1}{T}comb_\frac{1}{T} [ \mathrm{X}(f)] </math>......................

Revision as of 05:06, 30 September 2010

2010_Fall_ECE_438_Boutin/ECE438Mid1FormulaSheet_Work_wrk

  • Fourier series of a continuous-time signal x(t) periodic with period T
  • Fourier series coefficients of a continuous-time signal x(t) periodic with period T
$ DTFS $ $ x(t)=\sum_{n=-\infty}^\infty a_n e^{j \frac{2\pi}{T}nt} $ ...................... $ a_n=\frac{1}{T} \int_{0}^T x(t) e^{-j \frac{2\pi}{T}nt}dt $


$ CTFT $$ \ f(t) = \int_{-\infty}^{\infty} F(f)\ e^{j 2 \pi f t}\,df $.....................$ \ F(f) = \int_{-\infty}^{\infty} x(t)\ e^{- j 2 \pi f t}\,dt $



$ rep_T [x(t)] = x(t)* \sum_{k=-\infty}^{\infty}\delta(t-kT) $.........

$ comb_T[x(t)] = x(t) . \sum_{k=-\infty}^{\infty}\delta(t-kT) = x(t) . \mathrm{P_T} (t) $

$ rep_T [x(t)] \iff \frac{1}{T}comb_\frac{1}{T} [ \mathrm{X}(f)] $......................
$ comb_T [x(t)] \iff \frac{1}{T}rep_\frac{1}{T} [ \mathrm{X}(f)] $


Back to 2010 Fall ECE 438 Boutin/ECE438Mid1FormulaSheet Work

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin