m
m
Line 7: Line 7:
  
  
:<math>\ f(t) = \int_{-\infty}^{\infty} F(f)\ e^{j 2 \pi f t}\,df </math>.....................
+
:<math>CTFT</math><math>\ f(t) = \int_{-\infty}^{\infty} F(f)\ e^{j 2 \pi f t}\,df </math>.....................<math> \ F(f) = \int_{-\infty}^{\infty} x(t)\ e^{- j 2 \pi f t}\,dt</math>  
<math>CTFT</math><math> \ F(f) = \int_{-\infty}^{\infty} x(t)\ e^{- j 2 \pi f t}\,dt</math>  
+
  
  

Revision as of 05:00, 30 September 2010

2010_Fall_ECE_438_Boutin/ECE438Mid1FormulaSheet_Work_wrk

  • Fourier series of a continuous-time signal x(t) periodic with period T
  • Fourier series coefficients of a continuous-time signal x(t) periodic with period T
$ DTFS $ $ x(t)=\sum_{n=-\infty}^\infty a_n e^{j \frac{2\pi}{T}nt} $ ...................... $ a_n=\frac{1}{T} \int_{0}^T x(t) e^{-j \frac{2\pi}{T}nt}dt $


$ CTFT $$ \ f(t) = \int_{-\infty}^{\infty} F(f)\ e^{j 2 \pi f t}\,df $.....................$ \ F(f) = \int_{-\infty}^{\infty} x(t)\ e^{- j 2 \pi f t}\,dt $



$ comb_T [x(t)] \iff \frac{1}{T}rep_\frac{1}{T} [ \mathrm{X}(f)] $

$ rep_T [x(t)] \iff \frac{1}{T}comb_\frac{1}{T} [ \mathrm{X}(f)] $

Back to 2010 Fall ECE 438 Boutin/ECE438Mid1FormulaSheet Work

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva