m
m
Line 4: Line 4:
 
*Fourier series coefficients of a continuous-time signal x(t) periodic with period T
 
*Fourier series coefficients of a continuous-time signal x(t) periodic with period T
  
:<math>x(t)=\sum_{n=-\infty}^\infty a_n e^{j \frac{2\pi}{T}nt}</math>         <math>a_n=\frac{1}{T} \int_{0}^T x(t) e^{-j \frac{2\pi}{T}nt}dt</math>
+
:<math>x(t)=\sum_{n=-\infty}^\infty a_n e^{j \frac{2\pi}{T}nt}</math> ::: <math>a_n=\frac{1}{T} \int_{0}^T x(t) e^{-j \frac{2\pi}{T}nt}dt</math>
 +
 
 +
 
 +
:<math>\ F(f) = \int_{-\infty}^{\infty} x(t)\ e^{- j 2 \pi f t}\,dt </math>:<math>\ f(t) = \int_{-\infty}^{\infty} F(f)\ e^{j 2 \pi f t}\,df </math>

Revision as of 04:41, 30 September 2010

Work in progress for a formula sheet?

  • Fourier series of a continuous-time signal x(t) periodic with period T
  • Fourier series coefficients of a continuous-time signal x(t) periodic with period T
$ x(t)=\sum_{n=-\infty}^\infty a_n e^{j \frac{2\pi}{T}nt} $ ::: $ a_n=\frac{1}{T} \int_{0}^T x(t) e^{-j \frac{2\pi}{T}nt}dt $


$ \ F(f) = \int_{-\infty}^{\infty} x(t)\ e^{- j 2 \pi f t}\,dt $:$ \ f(t) = \int_{-\infty}^{\infty} F(f)\ e^{j 2 \pi f t}\,df $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett