m
Line 3: Line 3:
 
*Fourier series of a continuous-time signal x(t) periodic with period T
 
*Fourier series of a continuous-time signal x(t) periodic with period T
  
:<math>x(t)=\sum_{n=-\infty}^\infty a_n e^{j \frac{2\pi}{T}nt}</math>
+
:<math>x(t)=\sum_{n=-\infty}^\infty a_n e^{j \frac{2\pi}{T}nt}</math>  <math>a_n=\frac{1}{T} \int_{0}^T x(t) e^{-j \frac{2\pi}{T}nt}dt</math>
  
 
*Fourier series coefficients of a continuous-time signal x(t) periodic with period T
 
*Fourier series coefficients of a continuous-time signal x(t) periodic with period T
  
 
:<math>a_n=\frac{1}{T} \int_{0}^T x(t) e^{-j \frac{2\pi}{T}nt}dt</math>
 
:<math>a_n=\frac{1}{T} \int_{0}^T x(t) e^{-j \frac{2\pi}{T}nt}dt</math>

Revision as of 04:38, 30 September 2010

Work in progress for a formula sheet?

  • Fourier series of a continuous-time signal x(t) periodic with period T
$ x(t)=\sum_{n=-\infty}^\infty a_n e^{j \frac{2\pi}{T}nt} $ $ a_n=\frac{1}{T} \int_{0}^T x(t) e^{-j \frac{2\pi}{T}nt}dt $
  • Fourier series coefficients of a continuous-time signal x(t) periodic with period T
$ a_n=\frac{1}{T} \int_{0}^T x(t) e^{-j \frac{2\pi}{T}nt}dt $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang