Line 34: | Line 34: | ||
---- | ---- | ||
+ | <math> | ||
+ | \begin{align} | ||
+ | x[n] &= - a^n u[-n-1], \left |z \right| < \left | a \right| \\ | ||
+ | X(z) &= \frac{1}{1-az^{-1}}\\ | ||
+ | &= \frac{1}{1-a/z}\\ | ||
+ | &= \frac{z}{z-a}\\ | ||
+ | \end{align} | ||
+ | </math> | ||
+ | Multiplying and dividing X(z) by -1, | ||
+ | |||
+ | <math> | ||
+ | \begin{align} | ||
+ | X(z) &= \frac{-z}{a-z}\\ | ||
+ | &= \frac{-z}{a(1-z/a)}\\ | ||
+ | &= \frac{-z}{a}\frac{1}{1-(z/a)} \\ | ||
+ | &= \frac{-z}{a}\sum_{n=0}^{\infty}(z/a)^n \\ | ||
+ | &= - \sum_{n=0}^{\infty}(z/a)^{n+1} \\ | ||
+ | &= - \sum_{n=-\infty}^{\infty}(z/a)^{n+1}u[n] | ||
+ | \end{align} | ||
+ | </math> | ||
+ | |||
+ | Changing variable using n+1 = -k | ||
+ | |||
+ | <math> | ||
+ | \begin{align} | ||
+ | X(z) &= - \sum_{k=-\infty}^{\infty}(z/a)^{-k}u[-k-1] \\ | ||
+ | &= - \sum_{k=-\infty}^{\infty}a^{k}u[-k-1](z)^{-k} \\ | ||
+ | x[n] &= \mathcal{Z}^{-1}(X(z)) \text{ and } X(z) = \sum_{n=-\infty}^{\infty}x[n]z^{-n}\\ | ||
+ | x[n] &= -a^n u[-n-1] | ||
+ | |||
+ | \end{align} | ||
+ | </math> | ||
+ | |||
+ | ---- | ||
[[2010_Fall_ECE_438_Boutin|Back to 438 main page]] | [[2010_Fall_ECE_438_Boutin|Back to 438 main page]] |
Revision as of 12:07, 18 September 2010
Inverse Z-transforms
$ x[n] = \begin{cases} 1, & n = 4 \\ 2, & n = 5 \\ 3, & n = 2 \\ 0, & \mbox{else} \end{cases} $
This is equivalent to
$ \begin{align} x[n] &= \delta[n-4] + 2\delta [n-5] + 3\delta [n-2], \\ X(z) &= z^{-4} + 2z^{-5} + 3z^{-2}, (\text{converges for all } z \neq 0) \\ &= \left[z^{-4} + 2z^{-5} + 3z^{-2}\right] \sum_{n=-\infty}^{\infty} \delta[n]z^{-n} \\ &= \sum_{n=-\infty}^{\infty} \delta[n]z^{-n-4} + 2\sum_{n=-\infty}^{\infty} \delta[n]z^{-n-5} + 3\sum_{n=-\infty}^{\infty} \delta[n]z^{-n-2} \end{align} $
Using a change in variables to bring equation to the right form,
$ \begin{align} j = n+4 \\ k = n+5\\ l = n+2 \\ X(z) &= \sum_{j=-\infty}^{\infty} \delta[j-4]z^{-j} + 2\sum_{k=-\infty}^{\infty} \delta[k-5]z^{-k} + 3\sum_{l=-\infty}^{\infty} \delta[l-2]z^{-l} \\ x[n] &= \mathcal{Z}^{-1}(X(z)) \text{ and } X(z) = \sum_{n=-\infty}^{\infty}x[n]z^{-n}\\ x[n] &= \delta[n-4] + 2\delta [n-5] + 3\delta [n-2] \end{align} $
$ \begin{align} x[n] &= - a^n u[-n-1], \left |z \right| < \left | a \right| \\ X(z) &= \frac{1}{1-az^{-1}}\\ &= \frac{1}{1-a/z}\\ &= \frac{z}{z-a}\\ \end{align} $
Multiplying and dividing X(z) by -1,
$ \begin{align} X(z) &= \frac{-z}{a-z}\\ &= \frac{-z}{a(1-z/a)}\\ &= \frac{-z}{a}\frac{1}{1-(z/a)} \\ &= \frac{-z}{a}\sum_{n=0}^{\infty}(z/a)^n \\ &= - \sum_{n=0}^{\infty}(z/a)^{n+1} \\ &= - \sum_{n=-\infty}^{\infty}(z/a)^{n+1}u[n] \end{align} $
Changing variable using n+1 = -k
$ \begin{align} X(z) &= - \sum_{k=-\infty}^{\infty}(z/a)^{-k}u[-k-1] \\ &= - \sum_{k=-\infty}^{\infty}a^{k}u[-k-1](z)^{-k} \\ x[n] &= \mathcal{Z}^{-1}(X(z)) \text{ and } X(z) = \sum_{n=-\infty}^{\infty}x[n]z^{-n}\\ x[n] &= -a^n u[-n-1] \end{align} $