(New page: <math> x[n] = \begin{cases} 1, & n = 4 \\ 2, & n = 5 \\ 3, & n = 2 \\ 0, & \mbox{else} \end{cases} </math> This is equivalent to <math> \begin{align} x[n] &= u[n-4] + 2u[n-5] + 3u[n-2...)
 
Line 13: Line 13:
 
\begin{align}
 
\begin{align}
 
x[n] &= u[n-4] + 2u[n-5] + 3u[n-2] \\
 
x[n] &= u[n-4] + 2u[n-5] + 3u[n-2] \\
X(z) &= \frac{z^{-4} + 2z^{-5} + 3z^{-2}}{1-z^{-1}}, |z|>1 \\
+
& {\color{blue} \text{I think you mean } \delta[n-4] + 2\delta [n-5] + 3\delta [n-2]}, \\
 
+
{\color{blue} \text{and thus } X(z)} &{\color{blue}= z^{-4} + 2z^{-5} + 3z^{-2} , \text{ which converges for any finite }z\neq 0.}\\
 
+
 
\end{align}
 
\end{align}
 
</math>
 
</math>
  
 
[[2010_Fall_ECE_438_Boutin|Back to 438 main page]]
 
[[2010_Fall_ECE_438_Boutin|Back to 438 main page]]

Revision as of 07:45, 18 September 2010

$ x[n] = \begin{cases} 1, & n = 4 \\ 2, & n = 5 \\ 3, & n = 2 \\ 0, & \mbox{else} \end{cases} $

This is equivalent to

$ \begin{align} x[n] &= u[n-4] + 2u[n-5] + 3u[n-2] \\ & {\color{blue} \text{I think you mean } \delta[n-4] + 2\delta [n-5] + 3\delta [n-2]}, \\ {\color{blue} \text{and thus } X(z)} &{\color{blue}= z^{-4} + 2z^{-5} + 3z^{-2} , \text{ which converges for any finite }z\neq 0.}\\ \end{align} $

Back to 438 main page

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood