(New page: {| | align="left" style="padding-left: 0em;" | time reversal property |- | <math> \omega=2\pi f \ </math> |- | <math> \mathcal{X}(-\omega)=\mathcal{X}(-2\pi f)=X(-f) \ </math> |- | <math>S...) |
|||
Line 1: | Line 1: | ||
− | + | =How to obtain the time reversal property in terms of f in hertz (from the formula in terms of <math>\omega</math>) = | |
− | + | ||
− | + | To obtain X(f), use the substitution | |
− | + | ||
− | + | <math>\omega= 2 \pi f </math>. | |
− | + | ||
− | + | More specifically | |
− | + | ||
− | | | + | <math> \mathcal{X}(-\omega)=\mathcal{X}(-2\pi f)=X(-f) \ </math> |
+ | |||
+ | <math>Since\ X(\alpha)=\mathcal{X}(2\pi \alpha) \ </math> | ||
+ | |||
+ | ---- | ||
+ | [[ECE438_HW1_Solution|Back to Table]] |
Latest revision as of 11:16, 15 September 2010
How to obtain the time reversal property in terms of f in hertz (from the formula in terms of $ \omega $)
To obtain X(f), use the substitution
$ \omega= 2 \pi f $.
More specifically
$ \mathcal{X}(-\omega)=\mathcal{X}(-2\pi f)=X(-f) \ $
$ Since\ X(\alpha)=\mathcal{X}(2\pi \alpha) \ $