Line 1: Line 1:
CTFT of a cosine  
+
=How to obtain the CTFT of a cosine in terms of f in hertz (from the formula in terms of <math>\omega</math>) =
 +
 
 +
Recall:
 +
 
 +
<math>x(t)= \cos(\omega_0 t)</math>
 +
 
 +
<math>\mathcal{X}(\omega)=\pi \left[\delta (\omega - \omega_0) + \delta (\omega + \omega_0)\right] </math>
 +
 
 +
To obtain X(f), use the substitution
 +
 
 +
<math>\omega= 2 \pi f </math>.
 +
 
 +
More specifically
  
 
<math>
 
<math>
Line 10: Line 22:
  
 
<math>Since\ k\delta (kt)=\delta (t),\forall k\ne 0</math>
 
<math>Since\ k\delta (kt)=\delta (t),\forall k\ne 0</math>
 +
 +
----
 +
[[ECE438_HW1_Solution|Back to Table]]

Latest revision as of 10:50, 15 September 2010

How to obtain the CTFT of a cosine in terms of f in hertz (from the formula in terms of $ \omega $)

Recall:

$ x(t)= \cos(\omega_0 t) $

$ \mathcal{X}(\omega)=\pi \left[\delta (\omega - \omega_0) + \delta (\omega + \omega_0)\right] $

To obtain X(f), use the substitution

$ \omega= 2 \pi f $.

More specifically

$ \begin{align} X(f) &=\mathcal{X}(2\pi f) \\ &=\pi \left[\delta (2\pi f- \omega_0) + \delta (2\pi f+ \omega_0)\right] \\ &=\frac{1}{2} \left[\delta (f - \frac{\omega_0}{2\pi}) + \delta (f + \frac{\omega_0}{2\pi})\right] \end{align} $

$ Since\ k\delta (kt)=\delta (t),\forall k\ne 0 $


Back to Table

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett