Line 1: Line 1:
=How to obtain the CT Fourier transform formula in terms of f in hertz (from the formula in terms of <math>\omega</math> =
+
=How to obtain the CT Fourier transform formula in terms of f in hertz (from the formula in terms of <math>\omega</math>) =
  
 
Recall:
 
Recall:
 +
 
<math> \mathcal{X}(\omega )=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt</math>
 
<math> \mathcal{X}(\omega )=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt</math>
  
Line 7: Line 8:
 
To obtain X(f), use the substitution  
 
To obtain X(f), use the substitution  
  
<math>\omage= 2 \pi f </math>. More specifically
+
<math>\omega= 2 \pi f </math>.  
 +
 
 +
More specifically
  
 
<math>  
 
<math>  

Revision as of 09:01, 15 September 2010

How to obtain the CT Fourier transform formula in terms of f in hertz (from the formula in terms of $ \omega $)

Recall:

$ \mathcal{X}(\omega )=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt $


To obtain X(f), use the substitution

$ \omega= 2 \pi f $.

More specifically

$ \begin{align} X(f) &=\mathcal{X}(2\pi f)\\ &=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt \end{align} $


Back to ECE438

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett