Line 5: Line 5:
 
| <math>x(t)=cos(2\pi f_0t)=cos(2\pi *392t)</math>
 
| <math>x(t)=cos(2\pi f_0t)=cos(2\pi *392t)</math>
 
|-
 
|-
| <math>when\ sample\ period\ T_1=\frac{1}{1000}</math>
+
| <math>a.\ when\ sample\ period\ T_1=\frac{1}{1000}</math>
 
|-
 
|-
 
| <math>2f_0<\frac{1}{T_1}, \ No\ aliasing\ occurs.</math>  
 
| <math>2f_0<\frac{1}{T_1}, \ No\ aliasing\ occurs.</math>  
Line 45: Line 45:
 
{|
 
{|
 
|-
 
|-
| <math>when\ sample\ period\ T_2=\frac{1}{500}</math>
+
| <math>b.\ when\ sample\ period\ T_2=\frac{1}{500}</math>
 
|-
 
|-
 
| <math>2f_0>\frac{1}{T_2}, \ Aliasing\ occurs.</math>  
 
| <math>2f_0>\frac{1}{T_2}, \ Aliasing\ occurs.</math>  
Line 62: Line 62:
 
|-
 
|-
 
| <math>-2\pi<-2\pi *\frac{392}{500}<\pi</math>
 
| <math>-2\pi<-2\pi *\frac{392}{500}<\pi</math>
 +
|-
 +
| <math>\mathcal{X}_2(\omega)=\pi \left[\delta (\omega -2\pi *\frac{392}{500}) + \delta (\omega + 2\pi *\frac{392}{500})\right] </math>
 +
|-
 +
| <math>X_2(f)=\frac{1}{2}\left[\delta (f -\frac{392}{500}) + \delta (f + \frac{392}{500})\right]</math>
 
|}
 
|}
 +
 +
graph X2
 +
 +
{|
 +
| <math>for\ all\ the\ f</math>
 +
|-
 +
| <math>X_2(f)=\frac{1}{2}rep_2\left[\delta (f -\frac{392}{500}) + \delta (f + \frac{392}{500})\right]</math>
 +
|}
 +
 +
graph X2_all

Revision as of 19:15, 10 September 2010

Pick a note frequency $ f_0=392Hz $

$ x(t)=cos(2\pi f_0t)=cos(2\pi *392t) $
$ a.\ when\ sample\ period\ T_1=\frac{1}{1000} $
$ 2f_0<\frac{1}{T_1}, \ No\ aliasing\ occurs. $

$ \begin{align} x_1(n) &=x(nT_1)=cos(2\pi *392nT_1)=cos(2\pi *\frac{392}{1000}n) \\ &=\frac{1}{2}\left( e^{-j2\pi *\frac{392}{1000}n} + e^{j2\pi *\frac{392}{1000}n} \right) \\ \end{align} $

$ 0<2\pi *\frac{392}{1000}<\pi $
$ -\pi<-2\pi *\frac{392}{1000}<0 $

$ \begin{align} \mathcal{X}_1(\omega) &=2\pi *\frac{1}{2} \left[\delta (\omega -2\pi *\frac{392}{1000}) + \delta (\omega + 2\pi *\frac{392}{1000})\right] \\ &=\pi \left[\delta (\omega -2\pi *\frac{392}{1000}) + \delta (\omega + 2\pi *\frac{392}{1000})\right] \\ \end{align} $

graph x1w

$ for\ all\ \omega $
$ \mathcal{X}_1(\omega)=\pi* rep_{2\pi} \left[\delta (\omega -2\pi *\frac{392}{1000}) + \delta (\omega + 2\pi *\frac{392}{1000})\right] $

graph x1w_all

$ b.\ when\ sample\ period\ T_2=\frac{1}{500} $
$ 2f_0>\frac{1}{T_2}, \ Aliasing\ occurs. $

$ \begin{align} x_2(n) &=x(nT_2)=cos(2\pi *392nT_2)=cos(2\pi *\frac{392}{500}n) \\ &=\frac{1}{2}\left( e^{-j2\pi *\frac{392}{500}n} + e^{j2\pi *\frac{392}{500}n} \right) \\ \end{align} $

$ \pi<2\pi *\frac{392}{500}<2\pi $
$ -2\pi<-2\pi *\frac{392}{500}<\pi $
$ \mathcal{X}_2(\omega)=\pi \left[\delta (\omega -2\pi *\frac{392}{500}) + \delta (\omega + 2\pi *\frac{392}{500})\right] $
$ X_2(f)=\frac{1}{2}\left[\delta (f -\frac{392}{500}) + \delta (f + \frac{392}{500})\right] $

graph X2

$ for\ all\ the\ f $
$ X_2(f)=\frac{1}{2}rep_2\left[\delta (f -\frac{392}{500}) + \delta (f + \frac{392}{500})\right] $

graph X2_all

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett