(New page: {| |- | align="right" style="padding-right: 1em;" | CT Fourier Transform | | <math> X(f)=\mathcal{X}(2\pi f)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt</math> | |})
 
Line 2: Line 2:
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" | CT Fourier Transform  
 
| align="right" style="padding-right: 1em;" | CT Fourier Transform  
|  
+
|-
 
| <math> X(f)=\mathcal{X}(2\pi f)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt</math>  
 
| <math> X(f)=\mathcal{X}(2\pi f)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt</math>  
 
|  
 
|  
 
|}
 
|}

Revision as of 19:46, 9 September 2010

CT Fourier Transform
$ X(f)=\mathcal{X}(2\pi f)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett