(New page: {| | align="left" style="padding-left: 0em;" | CTFT of a periodic function |- | <math> X(f)=\mathcal{X}(2\pi f)=2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(w-kw_{0})=\sum^{\infty}_{k=-\inf...) |
|||
Line 2: | Line 2: | ||
| align="left" style="padding-left: 0em;" | CTFT of a periodic function | | align="left" style="padding-left: 0em;" | CTFT of a periodic function | ||
|- | |- | ||
− | | <math> X(f)=\mathcal{X}(2\pi f)=2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta( | + | | <math> X(f)=\mathcal{X}(2\pi f)=2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(2\pi f-kw_{0})=\sum^{\infty}_{k=-\infty}a_{k}\delta(f-\frac{kw_{0}}{2\pi})</math> |
|- | |- | ||
| <math>Since\ k\delta (kt)=\delta (t),\forall k\ne 0</math> | | <math>Since\ k\delta (kt)=\delta (t),\forall k\ne 0</math> | ||
|} | |} |
Revision as of 15:47, 9 September 2010
CTFT of a periodic function |
$ X(f)=\mathcal{X}(2\pi f)=2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(2\pi f-kw_{0})=\sum^{\infty}_{k=-\infty}a_{k}\delta(f-\frac{kw_{0}}{2\pi}) $ |
$ Since\ k\delta (kt)=\delta (t),\forall k\ne 0 $ |