(New page: {| | align="left" style="padding-left: 0em;" | CTFT of a periodic function |- | <math> X(f)=\mathcal{X}(2\pi f)=2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(w-kw_{0})=\sum^{\infty}_{k=-\inf...)
 
Line 2: Line 2:
 
| align="left" style="padding-left: 0em;" | CTFT of a periodic function   
 
| align="left" style="padding-left: 0em;" | CTFT of a periodic function   
 
|-  
 
|-  
| <math> X(f)=\mathcal{X}(2\pi f)=2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(w-kw_{0})=\sum^{\infty}_{k=-\infty}a_{k}\delta(f-\frac{kw_{0}}{2\pi})</math>  
+
| <math> X(f)=\mathcal{X}(2\pi f)=2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(2\pi f-kw_{0})=\sum^{\infty}_{k=-\infty}a_{k}\delta(f-\frac{kw_{0}}{2\pi})</math>  
 
|-
 
|-
 
| <math>Since\ k\delta (kt)=\delta (t),\forall k\ne 0</math>
 
| <math>Since\ k\delta (kt)=\delta (t),\forall k\ne 0</math>
 
|}
 
|}

Revision as of 15:47, 9 September 2010

CTFT of a periodic function
$ X(f)=\mathcal{X}(2\pi f)=2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(2\pi f-kw_{0})=\sum^{\infty}_{k=-\infty}a_{k}\delta(f-\frac{kw_{0}}{2\pi}) $
$ Since\ k\delta (kt)=\delta (t),\forall k\ne 0 $

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach