Line 11: | Line 11: | ||
|- | |- | ||
| <math>b.\text{ } x(t)=e^{-at}u(t)\ </math>, where <math>a\in {\mathbb R}, a>0 </math> | | <math>b.\text{ } x(t)=e^{-at}u(t)\ </math>, where <math>a\in {\mathbb R}, a>0 </math> | ||
− | |- | + | |- |
| <math>X(f)= \mathcal{X}(2\pi f)=\frac{1}{a+i2\pi f}</math> | | <math>X(f)= \mathcal{X}(2\pi f)=\frac{1}{a+i2\pi f}</math> | ||
|- | |- |
Revision as of 15:10, 9 September 2010
CTFT of a complex exponential |
$ a.\text{ } x(t)=e^{i\omega_0 t} $ |
$ X(f)= \mathcal{X}(2\pi f)=2\pi \delta (2\pi f-\omega_0) $ |
$ Since\text{ } k\delta (kt)=\delta (t),\forall k\ne 0 $ |
$ X(f)=\delta (f-\frac{\omega_0}{2\pi}) $ |
$ b.\text{ } x(t)=e^{-at}u(t)\ $, where $ a\in {\mathbb R}, a>0 $ |
$ X(f)= \mathcal{X}(2\pi f)=\frac{1}{a+i2\pi f} $ |
$ c.\text{ } x(t)=te^{-at}u(t)\ $, where $ a\in {\mathbb R}, a>0 $ |
$ X(f)= \mathcal{X}(2\pi f)=\left( \frac{1}{a+i2\pi f}\right)^2 $ |