Line 2: | Line 2: | ||
| align="left" style="padding-left: 0em;" | CTFT of a complex exponential | | align="left" style="padding-left: 0em;" | CTFT of a complex exponential | ||
|- | |- | ||
− | |<math>x(t)=e^{i\omega_0 t}</math> | + | | <math>a.\text{ } x(t)=e^{i\omega_0 t}</math> |
|- | |- | ||
− | |<math>X(f)= \mathcal{X}(2\pi f)=2\pi \delta (2\pi f-\omega_0)</math> | + | | <math>X(f)= \mathcal{X}(2\pi f)=2\pi \delta (2\pi f-\omega_0)</math> |
|- | |- | ||
− | |<math>Since\text{ } k\delta (kt)=\delta (t),\forall k\ne 0</math> | + | | <math>Since\text{ } k\delta (kt)=\delta (t),\forall k\ne 0</math> |
+ | |- | ||
+ | | <math>X(f)=\delta (f-\frac{\omega_0}{2\pi})</math> | ||
+ | |- | ||
+ | | <math>b.\text{ } x(t)=e^{-at}u(t)\ </math>, where <math>a\in {\mathbb R}, a>0 </math> | ||
+ | |- | ||
+ | | <math>X(f)= \mathcal{X}(2\pi f)=\frac{1}{a+i2\pi f}</math> | ||
+ | |- | ||
+ | | <math>c.\text{ } x(t)=te^{-at}u(t)\ </math>, where <math>a\in {\mathbb R}, a>0 </math> | ||
+ | |- | ||
+ | | <math>X(f)= \mathcal{X}(2\pi f)=\left( \frac{1}{a+i2\pi f}\right)^2</math> | ||
|- | |- | ||
− | |||
|} | |} |
Revision as of 15:08, 9 September 2010
CTFT of a complex exponential |
$ a.\text{ } x(t)=e^{i\omega_0 t} $ |
$ X(f)= \mathcal{X}(2\pi f)=2\pi \delta (2\pi f-\omega_0) $ |
$ Since\text{ } k\delta (kt)=\delta (t),\forall k\ne 0 $ |
$ X(f)=\delta (f-\frac{\omega_0}{2\pi}) $ |
$ b.\text{ } x(t)=e^{-at}u(t)\ $, where $ a\in {\mathbb R}, a>0 $ |
$ X(f)= \mathcal{X}(2\pi f)=\frac{1}{a+i2\pi f} $ |
$ c.\text{ } x(t)=te^{-at}u(t)\ $, where $ a\in {\mathbb R}, a>0 $ |
$ X(f)= \mathcal{X}(2\pi f)=\left( \frac{1}{a+i2\pi f}\right)^2 $ |