Line 1: Line 1:
 
{|
 
{|
 
|-
 
|-
! colspan="4" style="background: #e4bc7e; font-size: 110%;" | Laplace Transform Pairs and Properties
+
! colspan="4" style="background: none repeat scroll 0% 0% rgb(228, 188, 126); font-size: 110%;" | Laplace Transform Pairs and Properties
 
|-
 
|-
! colspan="4" style="background: #eee;" | Laplace Transform Pairs  
+
! colspan="4" style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" | Definition
 +
! rowspan="2" |
 +
! rowspan="2" |
 +
|-
 +
! colspan="2" | Laplace Transform
 +
! colspan="2" | <math>X(s)=\int_{-\infty}^\infty x(t) e^{-st}dt</math>
 +
|-
 +
! colspan="2" | Inverse Laplace Transform
 +
! colspan="2" |
 +
|-
 +
! colspan="4" style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" | Laplace Transform Pairs  
 
!  
 
!  
 
!  
 
!  
Line 94: Line 104:
  
 
----
 
----
[[ECE301|Go to the ECE 301 homepage]]
 
  
[[Collective_Table_of_Formulas|Back to Collective Table]]  
+
[[ECE301|Go to the ECE 301 homepage]]
 +
 
 +
[[Collective Table of Formulas|Back to Collective Table]]  
  
 
[[Category:Formulas]]
 
[[Category:Formulas]]

Revision as of 06:49, 7 September 2010

Laplace Transform Pairs and Properties
Definition
Laplace Transform $ X(s)=\int_{-\infty}^\infty x(t) e^{-st}dt $
Inverse Laplace Transform
Laplace Transform Pairs
notes Signal Laplace Transform ROC
unit impulse/Dirac delta $ \,\!\delta(t) $ 1 $ \text{All}\, s \in {\mathbb C} $
unit step function $ \,\! u(t) $ $ \frac{1}{s} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ \,\! -u(-t) $ $ \frac{1}{s} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 $
$ \frac{t^{n-1}}{(n-1)!}u(t) $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ -\frac{t^{n-1}}{(n-1)!}u(-t) $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 $
$ \,\!e^{-\alpha t}u(t) $ $ \frac{1}{s+\alpha} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ \,\! -e^{-\alpha t}u(-t) $ $ \frac{1}{s+\alpha} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha $
$ \frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t) $ $ \frac{1}{(s+\alpha )^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ -\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t) $ $ \frac{1}{(s+\alpha )^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha $
$ \,\!\delta (t - T) $ $ \,\! e^{-sT} $ $ \text{All}\,\, s\in {\mathbb C} $
$ \,\cos( \omega_0 t)u(t) $ $ \frac{s}{s^2+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ \, \sin( \omega_0 t)u(t) $ $ \frac{\omega_0}{s^2+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ \,e^{-\alpha t}\cos( \omega_0 t) u(t) $ $ \frac{s+\alpha}{(s+\alpha)^{2}+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ \, e^{-\alpha t}\sin( \omega_0 t)u(t) $ $ \frac{\omega_0}{(s+\alpha)^{2}+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ u_n(t) = \frac{d^{n}\delta (t)}{dt^{n}} $ $ \,\!s^{n} $ $ All\,\, s $
$ u_{-n}(t) = \underbrace{u(t) *\dots * u(t)}_{n\,\,times} $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $

Go to the ECE 301 homepage

Back to Collective Table

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010