(New page: =Homework 2, ECE438, Fall 2010, Prof. Boutin= Due Wednesday September 8, 2010 (in class) ---- ==Question 1== Pick a signal x(t) representing a note of the middle sca...)
(No difference)

Revision as of 05:07, 1 September 2010

Homework 2, ECE438, Fall 2010, Prof. Boutin

Due Wednesday September 8, 2010 (in class)


Question 1

Pick a signal x(t) representing a note of the middle scale of a piano (but not the middle C we did in class) and obtain its CTFT $ X(f) $. Then pick a sampling period $ T_1 $ for which no aliasing occurs and obtain the DTFT of the sampling $ x_1[n]=x(n T_1) $. More precisely, write a mathematical expression for $ X_1(\omega) $ and sketch its graph. Finally, pick a sampling frequency $ T_2 $ for which aliasing occurs and obtain the DTFT of the sampling $ x_2[n]=x(n T_2) $ (i.e., write a mathematical expression for $ X_2(f) $ and sketch its graph.) Note the difference and similarities between $ X(f) $ and $ X_1(\omega) $. Note the differences and similarities between $ X_1(\omega) $ and $ X_2(\omega) $.

You may post your answers on this page for collective discussion/comments (but this is optional).


Question 2

Pick five different DT signals and compute their z-transform. Then take the five z-transforms you obtained and compute their inverse z-transform.

You may post your answers on this page for collective discussion/comments (but this is optional).


Back to ECE438, Fall 2010, Prof. Boutin

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal