Line 33: | Line 33: | ||
|- | |- | ||
− | | 11- | + | | 11-13 |
| | | | ||
6. Parametric Density Estimation | 6. Parametric Density Estimation | ||
Line 41: | Line 41: | ||
|- | |- | ||
− | | | + | | 13-19 |
| | | | ||
7. Non-parametric Density Estimation | 7. Non-parametric Density Estimation | ||
Line 50: | Line 50: | ||
|- | |- | ||
− | | | + | | 19-22 |
| 8. Linear Discriminants | | 8. Linear Discriminants | ||
|- | |- |
Revision as of 06:20, 12 April 2010
Course Outline, ECE662 Spring 2010 Prof. Mimi
Note: This is an approximate outline that is subject to change throughout the semester.
Lecture | Topic |
---|---|
1 | 1. Introduction |
1 | 2. What is pattern Recognition |
2-3 | 3. Finite vs Infinite feature spaces |
4-5 | 4. Bayes Rule |
6-10 |
5. Discriminant functions
|
11-13 |
6. Parametric Density Estimation
|
13-19 |
7. Non-parametric Density Estimation
|
19-22 | 8. Linear Discriminants |
9. Non-Linear Discriminant functions
| |
10. Clustering |
Back to 2010 Spring ECE 662 mboutin