Line 1: | Line 1: | ||
− | {| | + | {| |
− | + | ||
|- | |- | ||
− | ! | + | ! style="background: none repeat scroll 0% 0% rgb(228, 188, 126); font-size: 110%;" colspan="2" | CT Fourier Transform Pairs and Properties (frequency <span class="texhtml">ω</span> in radians per time unit) [[More on CT Fourier transform|(info)]] |
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | [[ | + | ! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="2" | Definition CT Fourier Transform and its Inverse |
− | |- | + | |- |
− | | align="right" style="padding-right: 1em;" | [[ | + | | align="right" style="padding-right: 1em;" | [[More on CT Fourier transform|(info)]] CT Fourier Transform |
+ | | <math>\mathcal{X}(\omega)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i\omega t} dt</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | [[More on CT Fourier transform|(info)]] Inverse DT Fourier Transform | ||
+ | | <math>\, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{i\omega t} d \omega\,</math> | ||
|} | |} | ||
+ | |||
{| | {| | ||
|- | |- | ||
− | ! | + | ! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="4" | CT Fourier Transform Pairs |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | | align="right" style="padding-right: 1em;" | |
− | + | | <span class="texhtml">''x''(''t'')</span> | |
+ | | <math>\longrightarrow</math> | ||
+ | | <math> \mathcal{X}(\omega) </math> | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | CTFT of a | + | | align="right" style="padding-right: 1em;" | CTFT of a unit impulse |
− | + | | <math>\delta (t)\ </math> | |
+ | | | ||
+ | | <math> 1 \! \ </math> | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | CTFT of a | + | | align="right" style="padding-right: 1em;" | CTFT of a shifted unit impulse |
− | + | | <math>\delta (t-t_0)\ </math> | |
+ | | | ||
+ | | <math>e^{iwt_0}</math> | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | CTFT of a | + | | align="right" style="padding-right: 1em;" | CTFT of a complex exponential |
− | + | | <math>e^{iw_0t}</math> | |
+ | | | ||
+ | | <math> 2\pi \delta (\omega - \omega_0) \ </math> | ||
+ | | | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | | align="right" style="padding-right: 1em;" | |
− | + | | <math>e^{-at}u(t)\ </math>, where <math>a\in {\mathbb R}, a>0 </math> | |
+ | | | ||
+ | | <math>\frac{1}{a+i\omega}</math> | ||
+ | | | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | | align="right" style="padding-right: 1em;" | |
− | + | | <math>te^{-at}u(t)\ </math>, where <math>a\in {\mathbb R}, a>0 </math> | |
+ | | | ||
+ | | <math>\left( \frac{1}{a+i\omega}\right)^2</math> | ||
+ | | | ||
|- | |- | ||
+ | | align="right" style="padding-right: 1em;" | CTFT of a cosine | ||
+ | | <math>\cos(\omega_0 t) \ </math> | ||
+ | | | ||
+ | | <math> \pi \left[\delta (\omega - \omega_0) + \delta (\omega + \omega_0)\right] \ </math> | ||
+ | | | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | CTFT of a sine | ||
+ | | <math>sin(\omega_0 t) \ </math> | ||
+ | | | ||
+ | | <math>\frac{\pi}{i} \left[\delta (\omega - \omega_0) - \delta (\omega + \omega_0)\right]</math> | ||
+ | | | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | CTFT of a rect | ||
+ | | <math>\left\{\begin{array}{ll}1, & \text{ if }|t|<T,\\ 0, & \text{else.}\end{array} \right. \ </math> | ||
+ | | | ||
+ | | <math> \frac{2 \sin \left( T \omega \right)}{\omega} \ </math> | ||
+ | | | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | CTFT of a sinc | ||
+ | | <math>\frac{2 \sin \left( W t \right)}{\pi t } \ </math> | ||
+ | | | ||
+ | | <math>\left\{\begin{array}{ll}1, & \text{ if }|\omega| <W,\\ 0, & \text{else.}\end{array} \right. \ </math> | ||
+ | | | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | CTFT of a periodic function | ||
+ | | <math>\sum^{\infty}_{k=-\infty} a_{k}e^{ikw_{0}t}</math> | ||
+ | | | ||
+ | | <math>2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(w-kw_{0}) \ </math> | ||
+ | | | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | CTFT of an impulse train | ||
+ | | <math>\sum^{\infty}_{n=-\infty} \delta(t-nT) \ </math> | ||
+ | | | ||
+ | | <math>\frac{2\pi}{T}\sum^{\infty}_{k=-\infty}\delta(w-\frac{2\pi k}{T}) \ </math> | ||
+ | | | ||
|} | |} | ||
{| | {| | ||
|- | |- | ||
− | ! | + | ! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="4" | CT Fourier Transform Properties |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | | align="right" style="padding-right: 1em;" | |
+ | | <span class="texhtml">''x''(''t'')</span> | ||
+ | | <math>\longrightarrow</math> | ||
+ | | <math> \mathcal{X}(\omega) </math> | ||
|- | |- | ||
+ | | align="right" style="padding-right: 1em;" | multiplication property | ||
+ | | <math>x(t)y(t) \ </math> | ||
+ | | | ||
+ | | <math>\frac{1}{2\pi} X(\omega)*Y(\omega) =\frac{1}{2\pi} \int_{-\infty}^{\infty} X(\theta)Y(\omega-\theta)d\theta</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | convolution property | ||
+ | | <math>x(t)*y(t) \!</math> | ||
+ | | | ||
+ | | <math> X(\omega)Y(\omega) \!</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | time reversal | ||
+ | | <math>\ x(-t) </math> | ||
+ | | | ||
+ | | <math>\ X(-\omega)</math> | ||
|} | |} | ||
{| | {| | ||
|- | |- | ||
− | ! | + | ! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="2" | Other CT Fourier Transform Properties |
− | |- | + | |- |
− | | align="right" style="padding-right: 1em;" | Parseval's relation | + | | align="right" style="padding-right: 1em;" | Parseval's relation |
− | + | | <math>\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\mathcal{X}(w)|^2 dw</math> | |
|} | |} | ||
+ | |||
---- | ---- | ||
− | [[ MegaCollectiveTableTrial1|Back to Collective Table]] | + | |
+ | [[MegaCollectiveTableTrial1|Back to Collective Table]] | ||
+ | |||
[[Category:Formulas]] | [[Category:Formulas]] |
Revision as of 03:57, 5 April 2010
CT Fourier Transform Pairs and Properties (frequency ω in radians per time unit) (info) | |
---|---|
Definition CT Fourier Transform and its Inverse | |
(info) CT Fourier Transform | $ \mathcal{X}(\omega)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i\omega t} dt $ |
(info) Inverse DT Fourier Transform | $ \, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{i\omega t} d \omega\, $ |
CT Fourier Transform Pairs | ||||
---|---|---|---|---|
x(t) | $ \longrightarrow $ | $ \mathcal{X}(\omega) $ | ||
CTFT of a unit impulse | $ \delta (t)\ $ | $ 1 \! \ $ | ||
CTFT of a shifted unit impulse | $ \delta (t-t_0)\ $ | $ e^{iwt_0} $ | ||
CTFT of a complex exponential | $ e^{iw_0t} $ | $ 2\pi \delta (\omega - \omega_0) \ $ | ||
$ e^{-at}u(t)\ $, where $ a\in {\mathbb R}, a>0 $ | $ \frac{1}{a+i\omega} $ | |||
$ te^{-at}u(t)\ $, where $ a\in {\mathbb R}, a>0 $ | $ \left( \frac{1}{a+i\omega}\right)^2 $ | |||
CTFT of a cosine | $ \cos(\omega_0 t) \ $ | $ \pi \left[\delta (\omega - \omega_0) + \delta (\omega + \omega_0)\right] \ $ | ||
CTFT of a sine | $ sin(\omega_0 t) \ $ | $ \frac{\pi}{i} \left[\delta (\omega - \omega_0) - \delta (\omega + \omega_0)\right] $ | ||
CTFT of a rect | $ \left\{\begin{array}{ll}1, & \text{ if }|t|<T,\\ 0, & \text{else.}\end{array} \right. \ $ | $ \frac{2 \sin \left( T \omega \right)}{\omega} \ $ | ||
CTFT of a sinc | $ \frac{2 \sin \left( W t \right)}{\pi t } \ $ | $ \left\{\begin{array}{ll}1, & \text{ if }|\omega| <W,\\ 0, & \text{else.}\end{array} \right. \ $ | ||
CTFT of a periodic function | $ \sum^{\infty}_{k=-\infty} a_{k}e^{ikw_{0}t} $ | $ 2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(w-kw_{0}) \ $ | ||
CTFT of an impulse train | $ \sum^{\infty}_{n=-\infty} \delta(t-nT) \ $ | $ \frac{2\pi}{T}\sum^{\infty}_{k=-\infty}\delta(w-\frac{2\pi k}{T}) \ $ |
CT Fourier Transform Properties | |||
---|---|---|---|
x(t) | $ \longrightarrow $ | $ \mathcal{X}(\omega) $ | |
multiplication property | $ x(t)y(t) \ $ | $ \frac{1}{2\pi} X(\omega)*Y(\omega) =\frac{1}{2\pi} \int_{-\infty}^{\infty} X(\theta)Y(\omega-\theta)d\theta $ | |
convolution property | $ x(t)*y(t) \! $ | $ X(\omega)Y(\omega) \! $ | |
time reversal | $ \ x(-t) $ | $ \ X(-\omega) $ |
Other CT Fourier Transform Properties | |
---|---|
Parseval's relation | $ \int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\mathcal{X}(w)|^2 dw $ |