(New page: In other words prove that: <math> {n \choose 1} + {n \choose 3} + {n \choose 5} + ... = {n \choose 0} + {n \choose 2} + {n \choose 4} + ... </math>)
 
 
Line 2: Line 2:
  
 
<math> {n \choose 1} +  {n \choose 3} +  {n \choose 5} + ... = {n \choose 0} +  {n \choose 2} +  {n \choose 4} + ... </math>
 
<math> {n \choose 1} +  {n \choose 3} +  {n \choose 5} + ... = {n \choose 0} +  {n \choose 2} +  {n \choose 4} + ... </math>
 +
 +
In even more simple terms, this is just a rephrasing of Corollary 2 on page 365 of the book.

Latest revision as of 02:40, 18 September 2008

In other words prove that:

$ {n \choose 1} + {n \choose 3} + {n \choose 5} + ... = {n \choose 0} + {n \choose 2} + {n \choose 4} + ... $

In even more simple terms, this is just a rephrasing of Corollary 2 on page 365 of the book.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood