(New page: In other words prove that: <math> {n \choose 1} + {n \choose 3} + {n \choose 5} + ... = {n \choose 0} + {n \choose 2} + {n \choose 4} + ... </math>) |
|||
Line 2: | Line 2: | ||
<math> {n \choose 1} + {n \choose 3} + {n \choose 5} + ... = {n \choose 0} + {n \choose 2} + {n \choose 4} + ... </math> | <math> {n \choose 1} + {n \choose 3} + {n \choose 5} + ... = {n \choose 0} + {n \choose 2} + {n \choose 4} + ... </math> | ||
+ | |||
+ | In even more simple terms, this is just a rephrasing of Corollary 2 on page 365 of the book. |
Latest revision as of 02:40, 18 September 2008
In other words prove that:
$ {n \choose 1} + {n \choose 3} + {n \choose 5} + ... = {n \choose 0} + {n \choose 2} + {n \choose 4} + ... $
In even more simple terms, this is just a rephrasing of Corollary 2 on page 365 of the book.