Line 1: Line 1:
[[Category:2010_Spring_ECE_662_mboutin]]
+
<br>
  
= Course Outline, [[ECE662]] Spring 2010 [[User:mboutin|Prof. Mimi]]  =
+
= Course Outline, [[ECE662]] Spring 2010 [[User:Mboutin|Prof. Mimi]]  =
Note: This is an approximate outline that is subject to change throughout the semester.
+
  
 +
Note: This is an approximate outline that is subject to change throughout the semester.
  
 +
<br>
  
 +
{| width="55%" border="1" cellpadding="1" cellspacing="1"
 +
|-
 +
! scope="col" | Lecture
 +
! scope="col" | Topic
 +
|-
 +
| 1
 +
| 1. Introduction
 +
|-
 +
| 1
 +
| 2. What is pattern Recognition
 +
|-
 +
| 2-3
 +
| 3. Finite vs Infinite feature spaces
 +
|-
 +
| 4-5
 +
| 4. Bayes Rule
 +
|-
 +
| 6-10
 +
|
 +
5. Discriminate functions
 +
 +
- Definition;
 +
 +
- Application to normally distributed features;
 +
 +
- Error analysis.
 +
 +
|-
 +
| 11-12
 +
|
 +
6. Parametric Density Estimation
 +
 +
-Maximum likelihood estimation
 +
 +
-Bayesian parameter estimation
 +
 +
|-
 +
|
 +
|
 +
7. Non-parametric Density Estimation
 +
 +
-Parzen Windows
 +
 +
-K-nearest neighbors
 +
 +
-The nearest neighbor classification rule.
 +
 +
|-
 +
|
 +
| 8. Linear Discriminants
 +
|-
 +
|
 +
| 9. SVM
 +
|-
 +
|
 +
| 10. ANN
 +
|-
 +
|
 +
| 11. Decision Trees
 +
|-
 +
|
 +
| 12. Clustering
 +
|}
 +
 +
<br>
  
 
----
 
----
 +
 
  [[2010 Spring ECE 662 mboutin|Back to 2010 Spring ECE 662 mboutin]]
 
  [[2010 Spring ECE 662 mboutin|Back to 2010 Spring ECE 662 mboutin]]
 +
 +
[[Category:2010_Spring_ECE_662_mboutin]]

Revision as of 06:54, 9 March 2010


Course Outline, ECE662 Spring 2010 Prof. Mimi

Note: This is an approximate outline that is subject to change throughout the semester.


Lecture Topic
1 1. Introduction
1 2. What is pattern Recognition
2-3 3. Finite vs Infinite feature spaces
4-5 4. Bayes Rule
6-10

5. Discriminate functions

- Definition;

- Application to normally distributed features;

- Error analysis.

11-12

6. Parametric Density Estimation

-Maximum likelihood estimation

-Bayesian parameter estimation

7. Non-parametric Density Estimation

-Parzen Windows

-K-nearest neighbors

-The nearest neighbor classification rule.

8. Linear Discriminants
9. SVM
10. ANN
11. Decision Trees
12. Clustering



Back to 2010 Spring ECE 662 mboutin

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn