Line 35: Line 35:
  
  
<math>f^{-1}(G) = </math>{<math>x \in R, 1/2 \le f(x) \le 1 : f(x) \in G</math>}
+
<math>f^{-1}(G) = </math>{<math>x \in R, 1 \le f(x) \le 4 : f(x) \in G</math>}
  
 
= {<math>x : -1/2 \le x \le -1</math> or <math>1/2 \le x \le 1</math>}
 
= {<math>x : -1/2 \le x \le -1</math> or <math>1/2 \le x \le 1</math>}
  
 
<math>= [-1, -1/2]  \bigcup  [1/2, 1]
 
<math>= [-1, -1/2]  \bigcup  [1/2, 1]

Revision as of 13:03, 7 February 2010

To ask a new question, put a line and type your question. You can use LaTeX to type math. Here is a link to a short LaTeX tutorial.

To answer a question, open the page for editing and start typing below the question...

go back to the Discussion Page


I am having trouble with question 8 from our first HW. I am going back and trying to fix my old HW. I got back my HW and got a 0 out of 25. Can any one help get me started?

Thanks,

Andrew


8.(a)

$ f(1) = 1 / 1^2 = 1 / 1 = 1 $

$ f(2) = 1 / 2^2 = 1/4 $


$ f(E) = ${$ f(x) : 1 \le x \le 2 $}

$ 1/4 \le f(E) \le 1 $


Then, $ f(E) = ${$ y : 1/4 \le y \le 1 $}


(b)

$ f(1) = 1 / 1^2 = 1 / 1 = 1 $

$ f(2) = 1 / 4^2 = 1/16 $


$ f^{-1}(G) = ${$ x \in R, 1 \le f(x) \le 4 : f(x) \in G $}

= {$ x : -1/2 \le x \le -1 $ or $ 1/2 \le x \le 1 $}

$ = [-1, -1/2] \bigcup [1/2, 1] $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett