Line 9: Line 9:
 
In general,
 
In general,
  
<math>   |A(1) \cup A(2) \cup ... \cup A(n)| =  </math>
+
<math>\displaystyle    |A_1 \cup A_2 \cup ... \cup A_n| =  </math>
  
<math>   |A(1)| + |A(2)| + ... + |A(n)| </math>
+
<math>\displaystyle    |A_1| + |A_2| + ... + |A_n| </math>
  
<math>   - |A(1) \cap A(2)| - |A(1) \cap A(3)| - ... - |A(n-1) \cap A(n)| </math>
+
<math>\displaystyle    - |A_1 \cap A_2| - |A_1 \cap A_3| - ... - |A_(n-1)\cap A_n| </math>
  
<math>    + |A(1) \cap A(2) \cap A(3)| + |A(1) \cap A(2) \cap A(4)| + ... + |A(n-2) \cap A(n-1) \cap A(n)| </math>
+
<math>\displaystyle   + |A_1 \cap A_2 \cap A_3| + |A_1 \cap A_2 \cap A_4| + ... + |A_(n-2) \cap A_(n-1) \cap A_n| </math>
  
<math>    + (-1)^(n+1) |A(1) \cap A(2) \cap A(3) \cap ... \cap A(n)| </math>
+
<math>\displaystyle   + (-1)^(n+1)|A_1 \cap A_2 \cap A_3 \cap ... \cap A_n| </math>

Revision as of 16:36, 7 September 2008

Inclusion-Exclusion Principle (Basic)

Let B and C be subsets of a given set A. To count the number of elements in the union of B and C, we must evaluate the following:

$ |B \cup C| = |B| + |C| - |B \cap C| $

Subtracting $ |B \cap C| $ corrects the overcount.

In general,

$ \displaystyle |A_1 \cup A_2 \cup ... \cup A_n| = $

$ \displaystyle |A_1| + |A_2| + ... + |A_n| $

$ \displaystyle - |A_1 \cap A_2| - |A_1 \cap A_3| - ... - |A_(n-1)\cap A_n| $

$ \displaystyle + |A_1 \cap A_2 \cap A_3| + |A_1 \cap A_2 \cap A_4| + ... + |A_(n-2) \cap A_(n-1) \cap A_n| $

$ \displaystyle + (-1)^(n+1)|A_1 \cap A_2 \cap A_3 \cap ... \cap A_n| $

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch