(Inclusion-Exclusion Principle (Basic))
(Inclusion-Exclusion Principle (Basic))
Line 5: Line 5:
 
<math> |B \cup C| = |B| + |C| - |B \cap C| <math>
 
<math> |B \cup C| = |B| + |C| - |B \cap C| <math>
  
Subtracting <math>|B \cap C| <math\> corrects the overcount.
+
Subtracting <math>|B \cap C| <math> corrects the overcount.

Revision as of 06:46, 7 September 2008

Inclusion-Exclusion Principle (Basic)

Let B and C be subsets of a given set A. To count the number of elements in the union of B and C, we must evaluate the following:

$ |B \cup C| = |B| + |C| - |B \cap C| <math> Subtracting <math>|B \cap C| <math> corrects the overcount. $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett