Line 17: Line 17:
 
Like 1D signals, properties  such as the linearity, the shifting property, and so on, remained the same in 2D signals.
 
Like 1D signals, properties  such as the linearity, the shifting property, and so on, remained the same in 2D signals.
  
*Linearity:<math>af1(x,y)+bf2(x,y)------CSFT------ aF1(u,v)+bF2(u,v) </math>  
+
*'''Linearity:<math>af1(x,y)+bf2(x,y)------CSFT------ aF1(u,v)+bF2(u,v) </math>'''
*Scaling:<math>f(x/a,y/b)---------------CSFT--------|ab|F(au,bv)</math>  
+
 
*Shifting: <math>f(x-xo,y-yo)------------CSFT-------F(u,v)e^{-j2pi(uxo+vyo)} </math>   
+
*'''Scaling:<math>f(x/a,y/b)---------------CSFT--------|ab|F(au,bv)</math>'''
*Modulation:<math>f(x,y)e^{j2pi(xuo+yvo)}------------CSFT---------F(u-uo,v-vo)</math>         
+
 
*Reciprocity:<math>F(x,y)-----------------CSFT ------f(-u,-v)</math>    
+
*'''Shifting: <math>f(x-xo,y-yo)------------CSFT-------F(u,v)e^{-j2pi(uxo+vyo)} </math>'''
|Parseval’s relation:  
+
   
|Initial value:  
+
*'''Modulation:<math>f(x,y)e^{j2pi(xuo+yvo)}------------CSFT---------F(u-uo,v-vo)</math>'''
|Before we go to the important transform pairs, the separability is a very important property of 2D signals. It |enables us to transform 2D signals to our familiar 1D signals.
+
          
Given, g(x)-----1-D CSFT-----------G(u)
+
*'''Reciprocity:<math>F(x,y)-----------------CSFT ------f(-u,-v)</math> '''
       h(y)----1-D  CSFT-----------H(v)
+
   
       f(x,y)---2-D CSFT------------F(u,v)
+
*Parseval’s relation:<math>\int{|f(x,y)|^2dxdy }=\int{|F(u,v)|^2dudv } </math>
If a function can be rewritten as f(x,y)=g(x)h(y); then, its fourier transform is F(u,v)=G(u)H(v) .
+
 
 +
*Initial value: <math>F(0,0)=\int{f(x,y)dxdy } </math>
 +
 +
Before we go to the important transform pairs, the separability is a very important property of 2D signals. It enables us to transform 2D signals to our familiar 1D signals.
 +
 
 +
Given, '''<math>g(x)-----1-D CSFT-----------G(u)</math>'''
 +
       '''<math>h(y)----1-D  CSFT-----------H(v)</math>'''
 +
       '''<math>f(x,y)---2-D CSFT------------F(u,v)</math>'''
 +
 
 +
If a function can be rewritten as '''<math>f(x,y)=g(x)h(y)</math>'''; then, its fourier transform is       '''<math>F(u,v)=G(u)H(v) </math>'''  .
 +
 
 
For example,            rect(x,y)=rect(x)rect(y)----------CSFT------------sinc(u)sinc(v)=sinc(u,v)
 
For example,            rect(x,y)=rect(x)rect(y)----------CSFT------------sinc(u)sinc(v)=sinc(u,v)
 
Notes: If we are trying to draw rect(x,y) from a top view, it will just look like a square. In the 3D plot, we keep the top view as a base, making the height as 1. The plot is a cube.  Similar as  sinc(u,v).
 
Notes: If we are trying to draw rect(x,y) from a top view, it will just look like a square. In the 3D plot, we keep the top view as a base, making the height as 1. The plot is a cube.  Similar as  sinc(u,v).

Revision as of 12:41, 16 November 2009

Back to ECE438 course page


Spectral Analysis of 2D Signals (Nov.16)

This recitation covers the material from Nov. 4 to Nov. 13. So far, we have introduced the basic knowledge of 2D signals. As a review, let us start from the Continuous-Space Fourier Transform(CSFT) definitons and its inverse transform.

In 1D, we have:

  • $ X(f) = \int{x(t)e^{-j2pift} dt } $
  • $ x(t) = \int{X(2pif)e^{j2pift} df } $

Similarily, in2D, we have:

  • Forward transform- $ F(u,v) = \int{f(x,y)e^{-j2pi(ux+vy)} dxdy } $
  • Inverse transform- $ f(x,y) = \int{F(u,v)e^{j2pi(ux+vy)} dudv } $

Like 1D signals, properties such as the linearity, the shifting property, and so on, remained the same in 2D signals.

  • Linearity:$ af1(x,y)+bf2(x,y)------CSFT------ aF1(u,v)+bF2(u,v) $
  • Scaling:$ f(x/a,y/b)---------------CSFT--------|ab|F(au,bv) $
  • Shifting: $ f(x-xo,y-yo)------------CSFT-------F(u,v)e^{-j2pi(uxo+vyo)} $
  • Modulation:$ f(x,y)e^{j2pi(xuo+yvo)}------------CSFT---------F(u-uo,v-vo) $
  • Reciprocity:$ F(x,y)-----------------CSFT ------f(-u,-v) $
  • Parseval’s relation:$ \int{|f(x,y)|^2dxdy }=\int{|F(u,v)|^2dudv } $
  • Initial value: $ F(0,0)=\int{f(x,y)dxdy } $

Before we go to the important transform pairs, the separability is a very important property of 2D signals. It enables us to transform 2D signals to our familiar 1D signals.

Given, $ g(x)-----1-D CSFT-----------G(u) $

      $ h(y)----1-D  CSFT-----------H(v) $
      $ f(x,y)---2-D CSFT------------F(u,v) $

If a function can be rewritten as $ f(x,y)=g(x)h(y) $; then, its fourier transform is $ F(u,v)=G(u)H(v) $ .

For example, rect(x,y)=rect(x)rect(y)----------CSFT------------sinc(u)sinc(v)=sinc(u,v) Notes: If we are trying to draw rect(x,y) from a top view, it will just look like a square. In the 3D plot, we keep the top view as a base, making the height as 1. The plot is a cube. Similar as sinc(u,v). Another special function is the circ function and the jinc function. circ(x,y)------------CSFT----------------jinc(u,v) Notes: if we are trying to draw circ(x,y) from a top view, it will look like a circle with a radius of ½. In the 3D plot, we keep the top view as a base, making the height as 1. The plot is a cylinder. Other important transform pairs:

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman