Line 6: Line 6:
  
  
<math>Rect<math>\left (\mathit{x}, \mathit{y}\right ) =  
+
Rect<math>\left (\mathit{x}, \mathit{y}\right ) =  
 
\begin{cases}  
 
\begin{cases}  
   1,  & \mbox{if }|x|\mbox{ is less than 1} \\
+
   1,  & \mbox{if }|x|&|y|\mbox{ is less than 1} \\
 
   0, & \mbox{if }\mbox{ else}  
 
   0, & \mbox{if }\mbox{ else}  
 
\end{cases}</math>
 
\end{cases}</math>

Revision as of 20:40, 5 November 2009

TWO DIMENSIONAL SIGNALS


Some 2D signals are $ \ \delta\left (\mathit{x}, \mathit{y}\right ) $,Rect$ \left (\mathit{x}, \mathit{y}\right ) $,Sinc$ \left (\mathit{x}, \mathit{y}\right ) $.One important property of 2D functions is that they are separable,when they are a product of two 1D signals.They are of the form :

  $ \ \mathbf{f}\left (\mathit{x}, \mathit{y}\right )=\mathbf{g}\left (\mathit{x}\right )\mathbf{h}\left (\mathit{y}\right)   Rect<math>\left (\mathit{x}, \mathit{y}\right ) =  \begin{cases}    1,  & \mbox{if }|x|&|y|\mbox{ is less than 1} \\   0, & \mbox{if }\mbox{ else}  \end{cases} $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood