Line 3: Line 3:
 
! colspan="2" style="background:  #e4bc7e; font-size: 110%;" | Power Series Formulas
 
! colspan="2" style="background:  #e4bc7e; font-size: 110%;" | Power Series Formulas
 
|-
 
|-
! colspan="2" style="background: #eee;" | Taylor Series
+
! colspan="2" style="background: #eee;" | Series in symbolic forms
 +
|-
 +
| align="right" style="padding-right: 1em;" | Taylor Series in one variable || <math> \sum_{n=0} ^ {\infin } \frac {f^{(n)}(a)}{n!} \, (x-a)^{n}</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | Taylor Series in d variables ||
 +
<math>=\sum_{n_1=0}^{\infin} \cdots \sum_{n_d=0}^{\infin}
 +
\frac{(x_1-a_1)^{n_1}\cdots (x_d-a_d)^{n_d}}{n_1!\cdots n_d!}\,\left(\frac{\partial^{n_1 + \cdots + n_d}f}{\partial x_1^{n_1}\cdots \partial x_d^{n_d}}\right)(a_1,\dots,a_d).\!</math>
 +
|-
 +
! colspan="2" style="background: #eee;" | Taylor Series of certain functions
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" | exponential || <math>e^x = \sum_{n=0}^\infty \frac{x^n}{n!},</math> for all <math> x\in {\mathbb C}\ </math>
 
| align="right" style="padding-right: 1em;" | exponential || <math>e^x = \sum_{n=0}^\infty \frac{x^n}{n!},</math> for all <math> x\in {\mathbb C}\ </math>

Revision as of 16:42, 2 November 2009

Power Series Formulas
Series in symbolic forms
Taylor Series in one variable $ \sum_{n=0} ^ {\infin } \frac {f^{(n)}(a)}{n!} \, (x-a)^{n} $
Taylor Series in d variables

$ =\sum_{n_1=0}^{\infin} \cdots \sum_{n_d=0}^{\infin} \frac{(x_1-a_1)^{n_1}\cdots (x_d-a_d)^{n_d}}{n_1!\cdots n_d!}\,\left(\frac{\partial^{n_1 + \cdots + n_d}f}{\partial x_1^{n_1}\cdots \partial x_d^{n_d}}\right)(a_1,\dots,a_d).\! $

Taylor Series of certain functions
exponential $ e^x = \sum_{n=0}^\infty \frac{x^n}{n!}, $ for all $ x\in {\mathbb C}\ $
Geometric Series
(info) Finite Geometric Series Formula $ \sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1-x^{n+1}}{1-x}&, \text{ if } x\neq 1\\ n+1 &, \text{ else}\end{array}\right. $
(info) Infinite Geometric Series Formula $ \sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1}{1-x}&, \text{ if } |x|\leq 1\\ \text{diverges} &, \text{ else }\end{array}\right. $
Other Series
notes/name equation

Back to Collective Table

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett