Line 5: Line 5:
 
! colspan="2" style="background: #eee;" | Basic Definitions
 
! colspan="2" style="background: #eee;" | Basic Definitions
 
|-
 
|-
| align="right" style="padding-right: 1em;" | imaginary number || <math>i=\sqrt{-1} \ </math>
+
| align="right" style="padding-right: 2em;" | imaginary number || <math>i=\sqrt{-1} \ </math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" | electrical engineers' imaginary number || <math>j=\sqrt{-1}\ </math>
+
| align="right" style="padding-right: 2em;" | electrical engineers' imaginary number || <math>j=\sqrt{-1}\ </math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" | [[more_on_complex_conjugate|(info)]] conjugate of a complex number || if <math>z=a+ib</math>, for <math>a,b\in {\mathbb R}</math>, then <math> \bar{z}=a-ib </math>
+
| align="right" style="padding-right: 2em;" | [[more_on_complex_conjugate|(info)]] conjugate of a complex number || if <math>z=a+ib</math>, for <math>a,b\in {\mathbb R}</math>, then <math> \bar{z}=a-ib </math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" | [[more_on_complex_magnitude|(info)]] magnitude of a complex number || <math>\| z \| = z \bar{z} </math>
+
| align="right" style="padding-right: 2em;" | [[more_on_complex_magnitude|(info)]] magnitude of a complex number || <math>\| z \| = z \bar{z} </math>
 
|-  
 
|-  
| align="right" style="padding-right: 1em;" | [[more_on_complex_magnitude|(info)]] magnitude of a complex number || <math> \| z \| =  \sqrt{\left(Re(z)\right)^2+\left(Im(z)\right)^2}</math>
+
| align="right" style="padding-right: 2em;" | [[more_on_complex_magnitude|(info)]] magnitude of a complex number || <math> \| z \| =  \sqrt{\left(Re(z)\right)^2+\left(Im(z)\right)^2}</math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" | [[more_on_complex_magnitude|(info)]] magnitude of a complex number || <math>\| a+ib \| = \sqrt{a^2+b^2} </math>, for <math>a,b\in {\mathbb R}</math>
+
| align="right" style="padding-right: 2em;" | [[more_on_complex_magnitude|(info)]] magnitude of a complex number || <math>\| a+ib \| = \sqrt{a^2+b^2} </math>, for <math>a,b\in {\mathbb R}</math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" | [[more_on_complex_magnitude|(info)]] magnitude of a complex number || <math>\| r e^{i \theta} \| = r </math>, for <math>r,\theta\in {\mathbb R}</math>
+
| align="right" style="padding-right: 2em;" | [[more_on_complex_magnitude|(info)]] magnitude of a complex number || <math>\| r e^{i \theta} \| = r </math>, for <math>r,\theta\in {\mathbb R}</math>
 
|-
 
|-
 
! colspan="2" style="background: #eee;" | Complex Number Operations
 
! colspan="2" style="background: #eee;" | Complex Number Operations
 
|-
 
|-
| align="right" style="padding-right: 1em;" |addition || <math>(a+ib)+(c+id)=(a+c) + i (b+d) \ </math>
+
| align="right" style="padding-right: 2em;" |addition || <math>(a+ib)+(c+id)=(a+c) + i (b+d) \ </math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" |multiplication || <math>(a+ib) (c+id)=(ac-bd) + i (ad+bc) \ </math>
+
| align="right" style="padding-right: 2em;" |multiplication || <math>(a+ib) (c+id)=(ac-bd) + i (ad+bc) \ </math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" |division || <math>\frac{a+ib} {c+id}=\frac{ac+bd} {c^2+d^2}+ i \frac{bc-ad} {c^2+d^2} \ </math>
+
| align="right" style="padding-right: 2em;" |division || <math>\frac{a+ib} {c+id}=\frac{ac+bd} {c^2+d^2}+ i \frac{bc-ad} {c^2+d^2} \ </math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" | exponentiation || <math> i^n =\left\{ \begin{array}{ll}1,& \text{when }n\equiv 0\mod 4 \\ i,& \text{when }n\equiv 1\mod 4 \\-1,& \text{when }n\equiv 2\mod 4 \\-i,& \text{when }n\equiv 3\mod 4  
+
| align="right" style="padding-right: 2em;" | exponentiation || <math> i^n =\left\{ \begin{array}{ll}1,& \text{when }n\equiv 0\mod 4 \\ i,& \text{when }n\equiv 1\mod 4 \\-1,& \text{when }n\equiv 2\mod 4 \\-i,& \text{when }n\equiv 3\mod 4  
 
  \end{array} \right. \ </math>
 
  \end{array} \right. \ </math>
 
|-
 
|-
 
! colspan="2" style="background: #eee;" | Euler's Formula and Related Equalities [[more_on_Eulers_formula|(info)]]
 
! colspan="2" style="background: #eee;" | Euler's Formula and Related Equalities [[more_on_Eulers_formula|(info)]]
 
|-
 
|-
| align="right" style="padding-right: 1em;" | [[more_on_Eulers_formula|(info)]] Euler's formula || <math>e^{iw_0t}=\cos w_0t+i\sin w_0t \ </math>
+
| align="right" style="padding-right: 2em;" | [[more_on_Eulers_formula|(info)]] Euler's formula || <math>e^{iw_0t}=\cos w_0t+i\sin w_0t \ </math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" | A really cute formula || <math>e^{i\pi}=-1 \ </math>
+
| align="right" style="padding-right: 2em;" | A really cute formula || <math>e^{i\pi}=-1 \ </math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" | Cosine function in terms of complex exponentials|| <math>\cos\theta=\frac{e^{i\theta}+e^{-i\theta}}{2}</math>
+
| align="right" style="padding-right: 2em;" | Cosine function in terms of complex exponentials|| <math>\cos\theta=\frac{e^{i\theta}+e^{-i\theta}}{2}</math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" | Sine function in terms of complex exponentials||<math>\sin\theta=\frac{e^{i\theta}-e^{-i\theta}}{2i}</math>
+
| align="right" style="padding-right: 2em;" | Sine function in terms of complex exponentials||<math>\sin\theta=\frac{e^{i\theta}-e^{-i\theta}}{2i}</math>
 
|-
 
|-
 
! colspan="2" style="background: #eee;" | Other Formulas
 
! colspan="2" style="background: #eee;" | Other Formulas
 
|-  
 
|-  
| align="right" style="padding-right: 1em;" | De Moivre's theorem ||<math>\left(\cos x+i\sin x\right)^n=\cos\left(nx\right)+i\sin\left(nx\right).\,</math>
+
| align="right" style="padding-right: 2em;" | De Moivre's theorem ||<math>\left(\cos x+i\sin x\right)^n=\cos\left(nx\right)+i\sin\left(nx\right).\,</math>
 
|-  
 
|-  
 
|}
 
|}

Revision as of 16:34, 2 November 2009

Complex Number Identities and Formulas (info)
Basic Definitions
imaginary number $ i=\sqrt{-1} \ $
electrical engineers' imaginary number $ j=\sqrt{-1}\ $
(info) conjugate of a complex number if $ z=a+ib $, for $ a,b\in {\mathbb R} $, then $ \bar{z}=a-ib $
(info) magnitude of a complex number $ \| z \| = z \bar{z} $
(info) magnitude of a complex number $ \| z \| = \sqrt{\left(Re(z)\right)^2+\left(Im(z)\right)^2} $
(info) magnitude of a complex number $ \| a+ib \| = \sqrt{a^2+b^2} $, for $ a,b\in {\mathbb R} $
(info) magnitude of a complex number $ \| r e^{i \theta} \| = r $, for $ r,\theta\in {\mathbb R} $
Complex Number Operations
addition $ (a+ib)+(c+id)=(a+c) + i (b+d) \ $
multiplication $ (a+ib) (c+id)=(ac-bd) + i (ad+bc) \ $
division $ \frac{a+ib} {c+id}=\frac{ac+bd} {c^2+d^2}+ i \frac{bc-ad} {c^2+d^2} \ $
exponentiation $ i^n =\left\{ \begin{array}{ll}1,& \text{when }n\equiv 0\mod 4 \\ i,& \text{when }n\equiv 1\mod 4 \\-1,& \text{when }n\equiv 2\mod 4 \\-i,& \text{when }n\equiv 3\mod 4 \end{array} \right. \ $
Euler's Formula and Related Equalities (info)
(info) Euler's formula $ e^{iw_0t}=\cos w_0t+i\sin w_0t \ $
A really cute formula $ e^{i\pi}=-1 \ $
Cosine function in terms of complex exponentials $ \cos\theta=\frac{e^{i\theta}+e^{-i\theta}}{2} $
Sine function in terms of complex exponentials $ \sin\theta=\frac{e^{i\theta}-e^{-i\theta}}{2i} $
Other Formulas
De Moivre's theorem $ \left(\cos x+i\sin x\right)^n=\cos\left(nx\right)+i\sin\left(nx\right).\, $

Back to Collective Table

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett