Line 1: Line 1:
 +
{|
 +
|-
 +
! colspan="4" style="background:  #e4bc7e; font-size: 110%;" | Laplace Transform Pairs and Properties
 +
|-
 +
! colspan="4" style="background: #eee;" | Laplace Transform Pairs ||    ||
 +
|-
 +
| align=center" style="padding-right: 1em;" |  notes || Signal || Laplace Transform || ROC
 +
|-
 +
| align="left" style="padding-right: 1em;"  |  unit impulse/Dirac delta  || <math>\,\!\delta(t)</math> ||<math>1</math> || <math>\text{All}\, s \in {\mathbb C}</math>
 +
|-
 +
| align="right" style="padding-right: 1em;"  | unit step function  || <math>\,\! u(t)</math> || <math>\frac{1}{s}</math> || <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 </math>
 +
|-
 +
|align="right" style="padding-right: 1em;"| || <math>\,\! -u(-t)</math> || <math>\frac{1}{s}</math> || <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 </math>
 +
|-
 +
| align="right" style="padding-right: 1em;"| || <math>\frac{t^{n-1}}{(n-1)!}u(t)</math> || <math>\frac{1}{s^{n}}</math> || <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 </math>
 +
|-
 +
| align="right" style="padding-right: 1em;"|  ||<math>-\frac{t^{n-1}}{(n-1)!}u(-t)</math> || <math>\frac{1}{s^{n}}</math> || <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace  < 0 </math>
 +
|-
 +
| align="right" style="padding-right: 1em;"| || <math>\,\!e^{-\alpha t}u(t)</math> || <math>\frac{1}{s+\alpha}</math> || <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha </math>
 +
|-
 +
| align="right" style="padding-right: 1em;"|  || <math>\,\! -e^{-\alpha t}u(-t)</math> || <math>\frac{1}{s+\alpha}</math> || <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace  < -\alpha </math>
 +
|-
 +
| align="right" style="padding-right: 1em;"| || <math>\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t)</math> || <math>\frac{1}{(s+\alpha )^{n}}</math> || <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha </math>
 +
|-
 +
| align="right" style="padding-right: 1em;"| || <math>-\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t)</math> || <math>\frac{1}{(s+\alpha )^{n}}</math> || <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha </math>
 +
|-
 +
| align="right" style="padding-right: 1em;"| || <math>\,\!\delta (t - T)</math> || <math>\,\! e^{-sT}</math> || <math>All\,\, s</math>
 +
|-
 +
|align="right" style="padding-right: 1em;"|  || <math>\,\![cos( \omega_0 t)]u(t)</math> || <math>\frac{s}{s^2+\omega_0^{2}}</math> || <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 </math>
 +
|-
 +
| align="right" style="padding-right: 1em;"| || <math>\,\![sin( \omega_0 t)]u(t)</math> || <math>\frac{\omega_0}{s^2+\omega_0^{2}}</math> || <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 </math>
 +
|-
 +
|align="right" style="padding-right: 1em;"|  || <math>\,\![e^{-\alpha t}cos( \omega_0 t)]u(t)</math> || <math>\frac{s+\alpha}{(s+\alpha)^{2}+\omega_0^{2}}</math> || <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha </math>
 +
|-
 +
|align="right" style="padding-right: 1em;"|  || <math>\,\![e^{-\alpha t}sin( \omega_0 t)]u(t)</math> || <math>\frac{\omega_0}{(s+\alpha)^{2}+\omega_0^{2}}</math> || <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha </math>
 +
|-
 +
| align="right" style="padding-right: 1em;"| || <math>u_n(t) = \frac{d^{n}\delta (t)}{dt^{n}}</math> || <math>\,\!s^{n}</math> || <math>All\,\, s</math>
 +
|-
 +
| align="right" style="padding-right: 1em;"| || <math>u_{-n}(t) = \underbrace{u(t) *\dots * u(t)}_{n\,\,times}</math> || <math>\frac{1}{s^{n}}</math> || <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace  > 0 </math>
 +
|-
 +
|}
 +
 +
 
{|style="width:75%; background: none; text-align: center; border:1px solid gray;" align="center"
 
{|style="width:75%; background: none; text-align: center; border:1px solid gray;" align="center"
 
! colspan="4" style="background: #bbb; font-size: 110%;" | Laplace Transform Pairs and Properties  
 
! colspan="4" style="background: #bbb; font-size: 110%;" | Laplace Transform Pairs and Properties  

Revision as of 16:01, 2 November 2009

Laplace Transform Pairs and Properties
Laplace Transform Pairs
notes Signal Laplace Transform ROC
unit impulse/Dirac delta $ \,\!\delta(t) $ $ 1 $ $ \text{All}\, s \in {\mathbb C} $
unit step function $ \,\! u(t) $ $ \frac{1}{s} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ \,\! -u(-t) $ $ \frac{1}{s} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 $
$ \frac{t^{n-1}}{(n-1)!}u(t) $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ -\frac{t^{n-1}}{(n-1)!}u(-t) $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 $
$ \,\!e^{-\alpha t}u(t) $ $ \frac{1}{s+\alpha} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ \,\! -e^{-\alpha t}u(-t) $ $ \frac{1}{s+\alpha} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha $
$ \frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t) $ $ \frac{1}{(s+\alpha )^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ -\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t) $ $ \frac{1}{(s+\alpha )^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha $
$ \,\!\delta (t - T) $ $ \,\! e^{-sT} $ $ All\,\, s $
$ \,\![cos( \omega_0 t)]u(t) $ $ \frac{s}{s^2+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ \,\![sin( \omega_0 t)]u(t) $ $ \frac{\omega_0}{s^2+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ \,\![e^{-\alpha t}cos( \omega_0 t)]u(t) $ $ \frac{s+\alpha}{(s+\alpha)^{2}+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ \,\![e^{-\alpha t}sin( \omega_0 t)]u(t) $ $ \frac{\omega_0}{(s+\alpha)^{2}+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ u_n(t) = \frac{d^{n}\delta (t)}{dt^{n}} $ $ \,\!s^{n} $ $ All\,\, s $
$ u_{-n}(t) = \underbrace{u(t) *\dots * u(t)}_{n\,\,times} $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $


Laplace Transform Pairs and Properties
Laplace Transform Pairs
Note Signal Transform ROC
1 $ \,\!\delta(t) $ $ 1 $ $ All\,\, s $
2 $ \,\! u(t) $ $ \frac{1}{s} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
3 $ \,\! -u(-t) $ $ \frac{1}{s} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 $
4 $ \frac{t^{n-1}}{(n-1)!}u(t) $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
5 $ -\frac{t^{n-1}}{(n-1)!}u(-t) $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 $
6 $ \,\!e^{-\alpha t}u(t) $ $ \frac{1}{s+\alpha} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
7 $ \,\! -e^{-\alpha t}u(-t) $ $ \frac{1}{s+\alpha} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha $
8 $ \frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t) $ $ \frac{1}{(s+\alpha )^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
9 $ -\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t) $ $ \frac{1}{(s+\alpha )^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha $
10 $ \,\!\delta (t - T) $ $ \,\! e^{-sT} $ $ All\,\, s $
11 $ \,\![cos( \omega_0 t)]u(t) $ $ \frac{s}{s^2+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
12 $ \,\![sin( \omega_0 t)]u(t) $ $ \frac{\omega_0}{s^2+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
13 $ \,\![e^{-\alpha t}cos( \omega_0 t)]u(t) $ $ \frac{s+\alpha}{(s+\alpha)^{2}+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
14 $ \,\![e^{-\alpha t}sin( \omega_0 t)]u(t) $ $ \frac{\omega_0}{(s+\alpha)^{2}+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
15 $ u_n(t) = \frac{d^{n}\delta (t)}{dt^{n}} $ $ \,\!s^{n} $ $ All\,\, s $
16 $ u_{-n}(t) = \underbrace{u(t) *\dots * u(t)}_{n\,\,times} $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $

Back to Collective Table

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett