Line 19: Line 19:
 
| align="right" style="padding-right: 1em;" | [[more_on_complex_magnitude|(info)]] magnitude of a complex number || <math>\| r e^{i \theta} \| = r </math>, for <math>r,\theta\in {\mathbb R}</math>
 
| align="right" style="padding-right: 1em;" | [[more_on_complex_magnitude|(info)]] magnitude of a complex number || <math>\| r e^{i \theta} \| = r </math>, for <math>r,\theta\in {\mathbb R}</math>
 
|-
 
|-
! colspan="2" style="background: #eee;" | Euler's Formula and Related Equalities
+
! colspan="2" style="background: #eee;" | Euler's Formula and Related Equalities [[more_on_Eulers_formula|(info)]]
 
|-
 
|-
| align="right" style="padding-right: 1em;" | Euler's formula || <math>e^{iw_0t}=\cos w_0t+i\sin w_0t \ </math>
+
| align="right" style="padding-right: 1em;" | [[more_on_Eulers_formula|(info)]] Euler's formula || <math>e^{iw_0t}=\cos w_0t+i\sin w_0t \ </math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" | A really cute formula || <math>e^{i\pi}=-1 \ </math>
 
| align="right" style="padding-right: 1em;" | A really cute formula || <math>e^{i\pi}=-1 \ </math>

Revision as of 09:11, 2 November 2009

Complex Number Identities and Formulas (info)
Basic Definitions
imaginary number $ i=\sqrt{-1} \ $
electrical engineers' imaginary number $ j=\sqrt{-1}\ $
(info) conjugate of a complex number if $ z=a+ib $, for $ a,b\in {\mathbb R} $, then $ \bar{z}=a-ib $
(info) magnitude of a complex number $ \| z \| = z \bar{z} $
(info) magnitude of a complex number $ \| z \| = \sqrt{\left(Re(z)\right)^2+\left(Im(z)\right)^2} $
(info) magnitude of a complex number $ \| a+ib \| = \sqrt{a^2+b^2} $, for $ a,b\in {\mathbb R} $
(info) magnitude of a complex number $ \| r e^{i \theta} \| = r $, for $ r,\theta\in {\mathbb R} $
Euler's Formula and Related Equalities (info)
(info) Euler's formula $ e^{iw_0t}=\cos w_0t+i\sin w_0t \ $
A really cute formula $ e^{i\pi}=-1 \ $
Cosine function in terms of complex exponentials $ \cos\theta=\frac{e^{i\theta}+e^{-i\theta}}{2} $
Sine function in terms of complex exponentials $ \sin\theta=\frac{e^{i\theta}-e^{-i\theta}}{2i} $

Back to Collective Table

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood