Line 1: | Line 1: | ||
{| | {| | ||
− | ! colspan="2" style="background: #e4bc7e; font-size: 110%;" | CT Fourier Transform Pairs and Properties (frequency <math>\omega</math> in radians per time unit) | + | ! colspan="2" style="background: #e4bc7e; font-size: 110%;" | CT Fourier Transform Pairs and Properties (frequency <math>\omega</math> in radians per time unit) [[more_on_CT_Fourier_transform|(info)]] |
|- | |- | ||
! colspan="2" style="background: #eee;" | Definition CT Fourier Transform and its Inverse | ! colspan="2" style="background: #eee;" | Definition CT Fourier Transform and its Inverse | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | CT Fourier Transform || <math>\mathcal{X}(\omega)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt</math> | + | | align="right" style="padding-right: 1em;" | [[more_on_CT_Fourier_transform|(info)]] CT Fourier Transform || <math>\mathcal{X}(\omega)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt</math> |
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | Inverse DT Fourier Transform || <math>\, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t} d \omega\,</math> | + | | align="right" style="padding-right: 1em;" | [[more_on_CT_Fourier_transform|(info)]] Inverse DT Fourier Transform || <math>\, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t} d \omega\,</math> |
|} | |} | ||
{| | {| |
Revision as of 09:04, 2 November 2009
CT Fourier Transform Pairs and Properties (frequency $ \omega $ in radians per time unit) (info) | |
---|---|
Definition CT Fourier Transform and its Inverse | |
(info) CT Fourier Transform | $ \mathcal{X}(\omega)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt $ |
(info) Inverse DT Fourier Transform | $ \, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t} d \omega\, $ |
CT Fourier Transform Pairs | ||||
---|---|---|---|---|
$ x(t) $ | $ \longrightarrow $ | $ \mathcal{X}(\omega) $ | ||
CTFT of a unit impulse | $ \delta (t)\ $ | $ 1 \! \ $ | ||
CTFT of a shifted unit impulse | $ \delta (t-t_0)\ $ | $ e^{jwt_0} \ \ $ | ||
CTFT of a complex exponential | $ e^{jw_0t}\ $ | $ 2\pi \delta (\omega - \omega_0) \ $ | ||
$ e^{-at}u(t)\ $, where $ a\in {\mathbb R}, a>0 $ | $ \frac{1}{a+j\omega} \ $ | |||
$ te^{-at}u(t)\ $, where $ a\in {\mathbb R}, a>0 $ | $ \left( \frac{1}{a+j\omega}\right)^2 \ $ | |||
CTFT of a cosine | $ \cos(\omega_0 t) \ $ | $ \pi \left[\delta (\omega - \omega_0) + \delta (\omega + \omega_0)\right] \ $ | ||
CTFT of a sine | $ sin(\omega_0 t) \ $ | $ \frac{\pi}{j} \left[\delta (\omega - \omega_0) - \delta (\omega + \omega_0)\right] \ $ | ||
CTFT of a rect | $ \left\{\begin{array}{ll}1, & \text{ if }|t|<T,\\ 0, & \text{else.}\end{array} \right. \ $ | $ \frac{2 \sin \left( T \omega \right)}{\omega} \ $ | ||
CTFT of a sinc | $ \frac{2 \sin \left( W t \right)}{\pi t } \ $ | $ \left\{\begin{array}{ll}1, & \text{ if }|\omega| <W,\\ 0, & \text{else.}\end{array} \right. \ $ | ||
CTFT of a periodic function | $ \sum^{\infty}_{k=-\infty} a_{k}e^{jkw_{0}t} \ $ | $ 2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(w-kw_{0}) \ $ | ||
CTFT of an impulse train | $ \sum^{\infty}_{n=-\infty} \delta(t-nT) \ $ | $ \frac{2\pi}{T}\sum^{\infty}_{k=-\infty}\delta(w-\frac{2\pi k}{T}) \ $ |
CT Fourier Transform Properties | |||
---|---|---|---|
$ x(t) $ | $ \longrightarrow $ | $ \mathcal{X}(\omega) $ | |
multiplication property | $ x(t)y(t) \ $ | $ \frac{1}{2\pi} X(\omega)*Y(\omega) =\frac{1}{2\pi} \int_{-\infty}^{\infty} X(\theta)Y(\omega-\theta)d\theta $ | |
convolution property | $ x(t)*y(t) \! $ | $ X(\omega)Y(\omega) \! $ | |
time reversal | $ \ x(-t) $ | $ \ X(-\omega) $ |
Other CT Fourier Transform Properties | |
---|---|
Parseval's relation | $ \int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\mathcal{X}(w)|^2 dw $ |