Line 9: | Line 9: | ||
! colspan="2" style="background: #eee;" | Geometric Series | ! colspan="2" style="background: #eee;" | Geometric Series | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | Finite Geometric Series Formula || <math>\sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1-x^{n+1}}{1-x}&, \text{ if } x\neq 1\\ n+1 &, \text{ else}\end{array}\right. </math> | + | | align="right" style="padding-right: 1em;" | [[more_on_geometric_series|(info)]] Finite Geometric Series Formula || <math>\sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1-x^{n+1}}{1-x}&, \text{ if } x\neq 1\\ n+1 &, \text{ else}\end{array}\right. </math> |
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | Infinite Geometric Series Formula || <math>\sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1}{1-x}&, \text{ if } |x|\leq 1\\ \text{diverges} &, \text{ else }\end{array}\right. </math> | + | | align="right" style="padding-right: 1em;" | [[more_on_geometric_series|(info)]] Infinite Geometric Series Formula || <math>\sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1}{1-x}&, \text{ if } |x|\leq 1\\ \text{diverges} &, \text{ else }\end{array}\right. </math> |
|- | |- | ||
! colspan="2" style="background: #eee;" | Other Series | ! colspan="2" style="background: #eee;" | Other Series |
Revision as of 08:43, 2 November 2009
Power Series Formulas | |
---|---|
Taylor Series | |
exponential | $ e^x = \sum_{n=0}^\infty \frac{x^n}{n!}, $ for all $ x\in {\mathbb C}\ $ |
Geometric Series | |
(info) Finite Geometric Series Formula | $ \sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1-x^{n+1}}{1-x}&, \text{ if } x\neq 1\\ n+1 &, \text{ else}\end{array}\right. $ |
(info) Infinite Geometric Series Formula | $ \sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1}{1-x}&, \text{ if } |x|\leq 1\\ \text{diverges} &, \text{ else }\end{array}\right. $ |
Other Series | |
notes/name | equation |