Line 2: Line 2:
 
|-  
 
|-  
 
! colspan="2" style="background:  #e4bc7e; font-size: 110%;" | Power Series Formulas
 
! colspan="2" style="background:  #e4bc7e; font-size: 110%;" | Power Series Formulas
 +
|-
 +
! colspan="2" style="background: #eee;" | Taylor Series
 +
|-
 +
| align="right" style="padding-right: 1em;" | exponential || <math>e^x = \sum_{n=0}^\infty \frac{x^n}{n!},</math> for all <math> x\in {\mathbb C}\ </math>
 
|-
 
|-
 
! colspan="2" style="background: #eee;" | Geometric Series
 
! colspan="2" style="background: #eee;" | Geometric Series

Revision as of 07:35, 30 October 2009

Power Series Formulas
Taylor Series
exponential $ e^x = \sum_{n=0}^\infty \frac{x^n}{n!}, $ for all $ x\in {\mathbb C}\ $
Geometric Series
Finite Geometric Series Formula $ \sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1-x^{n+1}}{1-x}&, \text{ if } x\neq 1\\ n+1 &, \text{ else}\end{array}\right. $
Infinite Geometric Series Formula $ \sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1}{1-x}&, \text{ if } |x|\leq 1\\ \text{diverges} &, \text{ else }\end{array}\right. $
Other Series
notes/name equation

Back to Collective Table

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood