Line 4: | Line 4: | ||
|- | |- | ||
! colspan="2" style="background: #eee;" | Basic Definitions | ! colspan="2" style="background: #eee;" | Basic Definitions | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | imaginary number || <math>i=\sqrt{-1} \ </math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | electrical engineers imaginary number || <math>j=\sqrt{-1}\ </math> | ||
|- | |- | ||
| align="right" style="padding-right: 1em;" | conjugate of a complex number || if <math>z=a+jb</math>, for <math>a,b\in {\mathbb R}</math>, then <math> \bar{z}=a-jb </math> | | align="right" style="padding-right: 1em;" | conjugate of a complex number || if <math>z=a+jb</math>, for <math>a,b\in {\mathbb R}</math>, then <math> \bar{z}=a-jb </math> |
Revision as of 07:27, 30 October 2009
Complex Number Identities and Formulas | |
---|---|
Basic Definitions | |
imaginary number | $ i=\sqrt{-1} \ $ |
electrical engineers imaginary number | $ j=\sqrt{-1}\ $ |
conjugate of a complex number | if $ z=a+jb $, for $ a,b\in {\mathbb R} $, then $ \bar{z}=a-jb $ |
magnitude of a complex number | $ \| z \| = z \bar{z} $ |
magnitude of a complex number | $ \| z \| = \sqrt{\left(Re(z)\right)^2+\left(Im(z)\right)^2} $ |
magnitude of a complex number | $ \| a+jb \| = \sqrt{a^2+b^2} $, for $ a,b\in {\mathbb R} $ |
magnitude of a complex number | $ \| r e^{j \theta} \| = r $, for $ r,\theta\in {\mathbb R} $ |
Euler's Formula and Related Equalities | |
Euler's formula | $ e^{jw_0t}=\cos w_0t+j\sin w_0t $ |
Cosine function in terms of complex exponentials | $ \cos\theta=\frac{e^{j\theta}+e^{-j\theta}}{2} $ |
Sine function in terms of complex exponentials | $ \sin\theta=\frac{e^{j\theta}-e^{-j\theta}}{2j} $ |