Line 14: | Line 14: | ||
| align="right" style="padding-right: 1em;" | || <math>x(t)</math> || <math>\longrightarrow</math>|| <math> \mathcal{X}(\omega) </math> | | align="right" style="padding-right: 1em;" | || <math>x(t)</math> || <math>\longrightarrow</math>|| <math> \mathcal{X}(\omega) </math> | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | CTFT of a | + | | align="right" style="padding-right: 1em;" | CTFT of a unit impulse || <math>\delta (t)</math> || || <math> 1 \! \ </math> |
|- | |- | ||
| align="right" style="padding-right: 1em;" | CTFT of a complex exponential || <math>e^{jw_0t}</math> || || <math> 2\pi \delta (\omega - \omega_0) \ </math> | | align="right" style="padding-right: 1em;" | CTFT of a complex exponential || <math>e^{jw_0t}</math> || || <math> 2\pi \delta (\omega - \omega_0) \ </math> | ||
|| | || | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | | align="right" style="padding-right: 1em;" | || <math>e^{-at}u(t)</math>, where <math>a\in {\mathbb R}, a>0 </math> || || <math>\frac{1}{a+j\omega} \ </math> |
+ | || | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | || <math>te^{-at}u(t)</math>, where <math>a\in {\mathbb R}, a>0 </math> || || <math>\left( \frac{1}{a+j\omega}\right)^2 \ </math> | ||
|| | || | ||
|- | |- | ||
Line 29: | Line 32: | ||
|- | |- | ||
|} | |} | ||
+ | |||
+ | |||
+ | <math>x(t)=te^{-at}u(t), \text{ where }a\text{ is real,} a>0 \longrightarrow {\mathcal X}(\omega)=(\frac{1}{a+j\omega})^2 </math> | ||
+ | |||
{| | {| |
Revision as of 07:13, 30 October 2009
CT Fourier Transform Pairs and Properties (frequency $ \omega $ in radians per time unit) | |
---|---|
Definition CT Fourier Transform and its Inverse | |
CT Fourier Transform | $ \mathcal{X}(\omega)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt $ |
Inverse DT Fourier Transform | $ \, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t} d \omega\, $ |
CT Fourier Transform Pairs | ||||
---|---|---|---|---|
$ x(t) $ | $ \longrightarrow $ | $ \mathcal{X}(\omega) $ | ||
CTFT of a unit impulse | $ \delta (t) $ | $ 1 \! \ $ | ||
CTFT of a complex exponential | $ e^{jw_0t} $ | $ 2\pi \delta (\omega - \omega_0) \ $ | ||
$ e^{-at}u(t) $, where $ a\in {\mathbb R}, a>0 $ | $ \frac{1}{a+j\omega} \ $ | |||
$ te^{-at}u(t) $, where $ a\in {\mathbb R}, a>0 $ | $ \left( \frac{1}{a+j\omega}\right)^2 \ $ | |||
CTFT of a cosine | $ \cos(\omega_0 t) \ $ | $ \pi \left[\delta (\omega - \omega_0) + \delta (\omega + \omega_0)\right] \ $ | ||
CTFT of a sine | $ sin(\omega_0 t) \ $ | $ \frac{\pi}{j} \left[\delta (\omega - \omega_0) - \delta (\omega + \omega_0)\right] \ $ |
$ x(t)=te^{-at}u(t), \text{ where }a\text{ is real,} a>0 \longrightarrow {\mathcal X}(\omega)=(\frac{1}{a+j\omega})^2 $
CT Fourier Transform Properties | |||
---|---|---|---|
$ x(t) $ | $ \longrightarrow $ | $ \mathcal{X}(\omega) $ | |
multiplication property | $ x(t)y(t) \ $ | $ \frac{1}{2\pi} X(\omega)*Y(\omega) =\frac{1}{2\pi} \int_{-\infty}^{\infty} X(\theta)Y(\omega-\theta)d\theta $ | |
convolution property | $ x(t)*y(t) \! $ | $ X(\omega)Y(\omega) \! $ | |
time reversal | $ \ x(-t) $ | $ \ X(-\omega) $ |
Other CT Fourier Transform Properties | |
---|---|
Parseval's relation | $ \int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\mathcal{X}(w)|^2 dw $ |