Line 14: Line 14:
 
| align="right" style="padding-right: 1em;" |  || <math>x(t)</math> || <math>\longrightarrow</math>|| <math> \mathcal{X}(\omega) </math>
 
| align="right" style="padding-right: 1em;" |  || <math>x(t)</math> || <math>\longrightarrow</math>|| <math> \mathcal{X}(\omega) </math>
 
|-  
 
|-  
| align="right" style="padding-right: 1em;" | CTFT of a complex exponential || <math>\delta (t)</math> || || <math> 1 \! \ </math>
+
| align="right" style="padding-right: 1em;" | CTFT of a unit impulse || <math>\delta (t)</math> || || <math> 1 \! \ </math>
 
|-  
 
|-  
 
| align="right" style="padding-right: 1em;" | CTFT of a complex exponential || <math>e^{jw_0t}</math> || || <math> 2\pi \delta (\omega - \omega_0) \ </math>
 
| align="right" style="padding-right: 1em;" | CTFT of a complex exponential || <math>e^{jw_0t}</math> || || <math> 2\pi \delta (\omega - \omega_0) \ </math>
 
||  
 
||  
 
|-  
 
|-  
| align="right" style="padding-right: 1em;" | CTFT of a complex exponential || <math>e^{-at}u(t)</math>, where <math>a\in {\mathbb R}, a>0 </math> || || <math>\frac{1}{a+j\omega}  \ </math>
+
| align="right" style="padding-right: 1em;" | || <math>e^{-at}u(t)</math>, where <math>a\in {\mathbb R}, a>0 </math> || || <math>\frac{1}{a+j\omega}  \ </math>
 +
||
 +
|-
 +
| align="right" style="padding-right: 1em;" |  || <math>te^{-at}u(t)</math>, where <math>a\in {\mathbb R}, a>0 </math> || || <math>\left( \frac{1}{a+j\omega}\right)^2 \ </math>
 
||  
 
||  
 
|-
 
|-
Line 29: Line 32:
 
|-
 
|-
 
|}
 
|}
 +
 +
 +
<math>x(t)=te^{-at}u(t), \text{ where }a\text{ is real,} a>0 \longrightarrow {\mathcal X}(\omega)=(\frac{1}{a+j\omega})^2 </math>
 +
  
 
{|
 
{|

Revision as of 07:13, 30 October 2009

CT Fourier Transform Pairs and Properties (frequency $ \omega $ in radians per time unit)
Definition CT Fourier Transform and its Inverse
CT Fourier Transform $ \mathcal{X}(\omega)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt $
Inverse DT Fourier Transform $ \, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t} d \omega\, $
CT Fourier Transform Pairs
$ x(t) $ $ \longrightarrow $ $ \mathcal{X}(\omega) $
CTFT of a unit impulse $ \delta (t) $ $ 1 \! \ $
CTFT of a complex exponential $ e^{jw_0t} $ $ 2\pi \delta (\omega - \omega_0) \ $
$ e^{-at}u(t) $, where $ a\in {\mathbb R}, a>0 $ $ \frac{1}{a+j\omega} \ $
$ te^{-at}u(t) $, where $ a\in {\mathbb R}, a>0 $ $ \left( \frac{1}{a+j\omega}\right)^2 \ $
CTFT of a cosine $ \cos(\omega_0 t) \ $ $ \pi \left[\delta (\omega - \omega_0) + \delta (\omega + \omega_0)\right] \ $
CTFT of a sine $ sin(\omega_0 t) \ $ $ \frac{\pi}{j} \left[\delta (\omega - \omega_0) - \delta (\omega + \omega_0)\right] \ $


$ x(t)=te^{-at}u(t), \text{ where }a\text{ is real,} a>0 \longrightarrow {\mathcal X}(\omega)=(\frac{1}{a+j\omega})^2 $


CT Fourier Transform Properties
$ x(t) $ $ \longrightarrow $ $ \mathcal{X}(\omega) $
multiplication property $ x(t)y(t) \ $ $ \frac{1}{2\pi} X(\omega)*Y(\omega) =\frac{1}{2\pi} \int_{-\infty}^{\infty} X(\theta)Y(\omega-\theta)d\theta $
convolution property $ x(t)*y(t) \! $ $ X(\omega)Y(\omega) \! $
time reversal $ \ x(-t) $ $ \ X(-\omega) $
Other CT Fourier Transform Properties
Parseval's relation $ \int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\mathcal{X}(w)|^2 dw $

Back to Collective Table

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett