Line 1: Line 1:
=CT Fourier Transform Pairs and Properties=
+
{|
Using <math>\omega</math> in radians to parametrize the Fourier transforms.
+
! colspan="2" style="background: #bbb; font-size: 110%;" | CT Fourier Transform Pairs and Properties (frequency <math>\omega</math> in radians per time unit)
 
+
|-
 
+
! colspan="2" style="background: #eee;" | Definition CT Fourier Transform and its Inverse
 
+
{|
+
! colspan="2" style="background: #eee;" | CT Fourier transform and its Inverse
+
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" | CT Fourier Transform || <math>\mathcal{X}(\omega)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt</math>
 
| align="right" style="padding-right: 1em;" | CT Fourier Transform || <math>\mathcal{X}(\omega)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt</math>
Line 17: Line 14:
 
| align="right" style="padding-right: 1em;" |  || <math>x(t)</math> || <math>\longrightarrow</math>|| <math> \mathcal{X}(\omega) </math>
 
| align="right" style="padding-right: 1em;" |  || <math>x(t)</math> || <math>\longrightarrow</math>|| <math> \mathcal{X}(\omega) </math>
 
|-  
 
|-  
| align="right" style="padding-right: 1em;" | CTFT of a complex exponential || <math>e^{jw_0t}</math> || ||  
+
| align="right" style="padding-right: 1em;" | CTFT of a complex exponential || <math>e^{jw_0t}</math> || || <math> 2\pi \delta (\omega - \omega_0) \ </math>
 +
||
 +
|-
 +
| align="right" style="padding-right: 1em;" | CTFT of a cosine || <math>\cos(\omega_0 t) \ </math> || || <math> \pi \left[\delta (\omega - \omega_0) + \delta (\omega + \omega_0)\right] \ </math>
 +
||
 +
|-
 +
| align="right" style="padding-right: 1em;" | CTFT of a sine || <math>sin(\omega_0 t)  \ </math> || || <math> \frac{\pi}{j} \left[\delta (\omega - \omega_0) - \delta (\omega + \omega_0)\right]  \ </math>
 +
||  
 
|-
 
|-
 
|}
 
|}
 +
 +
 +
<math> x(t)=sin(\omega_0 t) \longrightarrow  {\mathcal X}(\omega)=\frac{\pi}{j} \left[\delta (\omega - \omega_0) - \delta (\omega + \omega_0)\right] </math>
 +
 +
 +
<math> x(t)=\cos(\omega_0 t) \longrightarrow {\mathcal X}(\omega)=\pi \left[\delta (\omega - \omega_0) + \delta (\omega + \omega_0)\right] </math>
 +
 +
  
 
{|
 
{|

Revision as of 07:48, 30 October 2009

CT Fourier Transform Pairs and Properties (frequency $ \omega $ in radians per time unit)
Definition CT Fourier Transform and its Inverse
CT Fourier Transform $ \mathcal{X}(\omega)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt $
Inverse DT Fourier Transform $ \, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t} d \omega\, $
CT Fourier Transform Pairs
$ x(t) $ $ \longrightarrow $ $ \mathcal{X}(\omega) $
CTFT of a complex exponential $ e^{jw_0t} $ $ 2\pi \delta (\omega - \omega_0) \ $
CTFT of a cosine $ \cos(\omega_0 t) \ $ $ \pi \left[\delta (\omega - \omega_0) + \delta (\omega + \omega_0)\right] \ $
CTFT of a sine $ sin(\omega_0 t) \ $ $ \frac{\pi}{j} \left[\delta (\omega - \omega_0) - \delta (\omega + \omega_0)\right] \ $


$ x(t)=sin(\omega_0 t) \longrightarrow {\mathcal X}(\omega)=\frac{\pi}{j} \left[\delta (\omega - \omega_0) - \delta (\omega + \omega_0)\right] $


$ x(t)=\cos(\omega_0 t) \longrightarrow {\mathcal X}(\omega)=\pi \left[\delta (\omega - \omega_0) + \delta (\omega + \omega_0)\right] $


CT Fourier Transform Properties
$ x(t) $ $ \longrightarrow $ $ \mathcal{X}(\omega) $
multiplication property $ x(t)y(t) \ $ $ \frac{1}{2\pi} X(\omega)*Y(\omega) =\frac{1}{2\pi} \int_{-\infty}^{\infty} X(\theta)Y(\omega-\theta)d\theta $
convolution property $ x(t)*y(t) \! $ $ X(\omega)Y(\omega) \! $
time reversal $ \ x(-t) $ $ \ X(-\omega) $
Other CT Fourier Transform Properties
Parseval's relation

Back to Collective Table




Back to Collective Table

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett