Line 1: Line 1:
=CT Fourier Transform Pairs and Properties=
+
{|
Using <math>\omega</math> in radians to parametrize the Fourier transforms.
+
! colspan="2" style="background: #bbb; font-size: 110%;" | CT Fourier Transform Pairs and Properties (frequency <math>\omega</math> in radians per time unit)
 
+
|-
 
+
! colspan="2" style="background: #eee;" | Definition CT Fourier Transform and its Inverse
 
+
{|
+
! colspan="2" style="background: #eee;" | CT Fourier transform and its Inverse
+
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" | CT Fourier Transform || <math>\mathcal{X}(\omega)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt</math>
 
| align="right" style="padding-right: 1em;" | CT Fourier Transform || <math>\mathcal{X}(\omega)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt</math>
Line 17: Line 14:
 
| align="right" style="padding-right: 1em;" |  || <math>x(t)</math> || <math>\longrightarrow</math>|| <math> \mathcal{X}(\omega) </math>
 
| align="right" style="padding-right: 1em;" |  || <math>x(t)</math> || <math>\longrightarrow</math>|| <math> \mathcal{X}(\omega) </math>
 
|-  
 
|-  
| align="right" style="padding-right: 1em;" | CTFT of a complex exponential || <math>e^{jw_0t}</math> || ||  
+
| align="right" style="padding-right: 1em;" | CTFT of a complex exponential || <math>e^{jw_0t}</math> || || <math> 2\pi \delta (\omega - \omega_0) \ </math>
 +
||
 +
|-
 +
| align="right" style="padding-right: 1em;" | CTFT of a cosine || <math>\cos(\omega_0 t) \ </math> || || <math> \pi \left[\delta (\omega - \omega_0) + \delta (\omega + \omega_0)\right] \ </math>
 +
||
 +
|-
 +
| align="right" style="padding-right: 1em;" | CTFT of a sine || <math>sin(\omega_0 t)  \ </math> || || <math> \frac{\pi}{j} \left[\delta (\omega - \omega_0) - \delta (\omega + \omega_0)\right]  \ </math>
 +
||  
 
|-
 
|-
 
|}
 
|}
 +
 +
 +
<math> x(t)=sin(\omega_0 t) \longrightarrow  {\mathcal X}(\omega)=\frac{\pi}{j} \left[\delta (\omega - \omega_0) - \delta (\omega + \omega_0)\right] </math>
 +
 +
 +
<math> x(t)=\cos(\omega_0 t) \longrightarrow {\mathcal X}(\omega)=\pi \left[\delta (\omega - \omega_0) + \delta (\omega + \omega_0)\right] </math>
 +
 +
  
 
{|
 
{|

Revision as of 06:48, 30 October 2009

CT Fourier Transform Pairs and Properties (frequency $ \omega $ in radians per time unit)
Definition CT Fourier Transform and its Inverse
CT Fourier Transform $ \mathcal{X}(\omega)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt $
Inverse DT Fourier Transform $ \, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t} d \omega\, $
CT Fourier Transform Pairs
$ x(t) $ $ \longrightarrow $ $ \mathcal{X}(\omega) $
CTFT of a complex exponential $ e^{jw_0t} $ $ 2\pi \delta (\omega - \omega_0) \ $
CTFT of a cosine $ \cos(\omega_0 t) \ $ $ \pi \left[\delta (\omega - \omega_0) + \delta (\omega + \omega_0)\right] \ $
CTFT of a sine $ sin(\omega_0 t) \ $ $ \frac{\pi}{j} \left[\delta (\omega - \omega_0) - \delta (\omega + \omega_0)\right] \ $


$ x(t)=sin(\omega_0 t) \longrightarrow {\mathcal X}(\omega)=\frac{\pi}{j} \left[\delta (\omega - \omega_0) - \delta (\omega + \omega_0)\right] $


$ x(t)=\cos(\omega_0 t) \longrightarrow {\mathcal X}(\omega)=\pi \left[\delta (\omega - \omega_0) + \delta (\omega + \omega_0)\right] $


CT Fourier Transform Properties
$ x(t) $ $ \longrightarrow $ $ \mathcal{X}(\omega) $
multiplication property $ x(t)y(t) \ $ $ \frac{1}{2\pi} X(\omega)*Y(\omega) =\frac{1}{2\pi} \int_{-\infty}^{\infty} X(\theta)Y(\omega-\theta)d\theta $
convolution property $ x(t)*y(t) \! $ $ X(\omega)Y(\omega) \! $
time reversal $ \ x(-t) $ $ \ X(-\omega) $
Other CT Fourier Transform Properties
Parseval's relation

Back to Collective Table




Back to Collective Table

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva