Line 4: Line 4:
  
  
 +
{|
 +
! colspan="2" style="background: #eee;" | CT Fourier transform and its Inverse
 +
|-
 +
| align="right" style="padding-right: 1em;" | CT Fourier Transform || <math>\mathcal{X}(\omega)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | Inverse DT Fourier Transform || <math>\, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t} d \omega\,</math>
 +
|}
 +
{|
 +
|-
 +
! colspan="4" style="background: #eee;" | CT Fourier Transform Pairs
 +
|-
 +
| align="right" style="padding-right: 1em;" |  || <math>x(t)</math> || <math>\longrightarrow</math>|| <math> \mathcal{X}(\omega) </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | CTFT of a complex exponential || <math>e^{jw_0t}</math> || ||
 +
|-
 +
|}
  
under constructions
+
{|
 +
|-
 +
! colspan="4" style="background: #eee;" | CT Fourier Transform Properties
 +
|-
 +
| align="right" style="padding-right: 1em;" |  || <math>x(t)</math> || <math>\longrightarrow</math>|| <math> \mathcal{X}(\omega) </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | multiplication property|| <math>x(t)y(t) \ </math> || || <math>\frac{1}{2\pi} X(\omega)*Y(\omega) =\frac{1}{2\pi} \int_{-\infty}^{\infty} X(\theta)Y(\omega-\theta)d\theta</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" |  convolution property || <math>x(t)*y(t) \!</math> || ||<math> X(\omega)Y(\omega) \!</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | time reversal ||<math>\ x(-t) </math> || ||<math>\ X(-\omega)</math>
 +
|-
 +
|}
 +
 
 +
{|
 +
|-
 +
! colspan="2" style="background: #eee;" | Other CT Fourier Transform Properties
 +
|-
 +
| align="right" style="padding-right: 1em;" | Parseval's relation  ||
 +
|}
 +
----
 +
[[ MegaCollectiveTableTrial1|Back to Collective Table]]
  
  

Revision as of 07:19, 28 October 2009

CT Fourier Transform Pairs and Properties

Using $ \omega $ in radians to parametrize the Fourier transforms.


CT Fourier transform and its Inverse
CT Fourier Transform $ \mathcal{X}(\omega)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt $
Inverse DT Fourier Transform $ \, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t} d \omega\, $
CT Fourier Transform Pairs
$ x(t) $ $ \longrightarrow $ $ \mathcal{X}(\omega) $
CTFT of a complex exponential $ e^{jw_0t} $
CT Fourier Transform Properties
$ x(t) $ $ \longrightarrow $ $ \mathcal{X}(\omega) $
multiplication property $ x(t)y(t) \ $ $ \frac{1}{2\pi} X(\omega)*Y(\omega) =\frac{1}{2\pi} \int_{-\infty}^{\infty} X(\theta)Y(\omega-\theta)d\theta $
convolution property $ x(t)*y(t) \! $ $ X(\omega)Y(\omega) \! $
time reversal $ \ x(-t) $ $ \ X(-\omega) $
Other CT Fourier Transform Properties
Parseval's relation

Back to Collective Table




Back to Collective Table

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett