Line 13: Line 13:
 
! colspan="2" style="background: #eee;" | DT Fourier Transform Pairs
 
! colspan="2" style="background: #eee;" | DT Fourier Transform Pairs
 
|-  
 
|-  
| align="right" style="padding-right: 1em;" | [[:DT Fourier Transform Pair_ECE301Fall2008mboutin]] || {{:DT Fourier Transform Pair_ECE301Fall2008mboutin}}
+
| align="right" style="padding-right: 1em;" | DTFT of a complex exponential || <math>e^{jw_0n} \longrightarrow 2\pi\sum_{l=-\infty}^{+\infty}\delta(w-w_0-2\pi l) \ </math>
 +
 
 
|-
 
|-
 
|-  
 
|-  

Revision as of 05:27, 27 October 2009

Discrete-time Fourier Transform Pairs and Properties

Please feel free to add onto this table!


DT Fourier transform and its Inverse
DT Fourier Transform $ \,\mathcal{X}(\omega)=\mathcal{F}(x[n])=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}\, $
Inverse DT Fourier Transform $ \,x[n]=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{0}^{2\pi}\mathcal{X}(\omega)e^{j\omega n} d \omega\, $
DT Fourier Transform Pairs
DTFT of a complex exponential $ e^{jw_0n} \longrightarrow 2\pi\sum_{l=-\infty}^{+\infty}\delta(w-w_0-2\pi l) \ $
DT Fourier an_ECE301Fall2008mboutin $ a^{n} u[n], |a|<1 \longrightarrow \frac{1}{1-ae^{-j\omega}} \ $





Back to Collective Table

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch