Line 1: Line 1:
= Some Laplace Transform Pairs =
+
= Table of Laplace Transform Pairs =
{{:LaplaceTransforms_ECE301Fall2008mboutin}}
+
{|style="width:75%; background: none; text-align: center; border:1px solid gray;" align="center"
 +
|-
 +
! colspan="4" align="left" style="background: #b79256; font-size: 120%;" | Laplace Transform Pairs
 +
|- style="background: #e4bc7e; font-size: 110%;" align="center"
 +
! width="75px"|Transform Pair !! Signal
 +
! width="170px"|Transform
 +
! width="170px"|ROC
 +
|- 
 +
| align="right" style="padding-right: 1em;"|1 || <math>\,\!\delta(t)</math> || <math>1</math> ||  <math>All\,\, s</math>
 +
|-
 +
| align="right" style="padding-right: 1em;"|2 || <math>\,\! u(t)</math> || <math>\frac{1}{s}</math> || <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 </math>
 +
|-
 +
|align="right" style="padding-right: 1em;"| 3 || <math>\,\! -u(-t)</math> || <math>\frac{1}{s}</math> || <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 </math>
 +
|-
 +
| align="right" style="padding-right: 1em;"|4 || <math>\frac{t^{n-1}}{(n-1)!}u(t)</math> || <math>\frac{1}{s^{n}}</math> || <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 </math>
 +
|-
 +
| align="right" style="padding-right: 1em;"|5 || <math>-\frac{t^{n-1}}{(n-1)!}u(-t)</math> || <math>\frac{1}{s^{n}}</math> || <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace  < 0 </math>
 +
|-
 +
| align="right" style="padding-right: 1em;"|6 || <math>\,\!e^{-\alpha t}u(t)</math> || <math>\frac{1}{s+\alpha}</math> || <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha </math>
 +
|-
 +
| align="right" style="padding-right: 1em;"|7 || <math>\,\! -e^{-\alpha t}u(-t)</math> || <math>\frac{1}{s+\alpha}</math> || <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace  < -\alpha </math>
 +
|-
 +
| align="right" style="padding-right: 1em;"|8 || <math>\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t)</math> || <math>\frac{1}{(s+\alpha )^{n}}</math> || <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha </math>
 +
|-
 +
| align="right" style="padding-right: 1em;"|9 || <math>-\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t)</math> || <math>\frac{1}{(s+\alpha )^{n}}</math> || <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha </math>
 +
|-
 +
| align="right" style="padding-right: 1em;"|10 || <math>\,\!\delta (t - T)</math> || <math>\,\! e^{-sT}</math> || <math>All\,\, s</math>
 +
|-
 +
|align="right" style="padding-right: 1em;"| 11 || <math>\,\![cos( \omega_0 t)]u(t)</math> || <math>\frac{s}{s^2+\omega_0^{2}}</math> || <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 </math>
 +
|-
 +
| align="right" style="padding-right: 1em;"|12 || <math>\,\![sin( \omega_0 t)]u(t)</math> || <math>\frac{\omega_0}{s^2+\omega_0^{2}}</math> || <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 </math>
 +
|-
 +
|align="right" style="padding-right: 1em;"| 13 || <math>\,\![e^{-\alpha t}cos( \omega_0 t)]u(t)</math> || <math>\frac{s+\alpha}{(s+\alpha)^{2}+\omega_0^{2}}</math> || <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha </math>
 +
|-
 +
|align="right" style="padding-right: 1em;"| 14 || <math>\,\![e^{-\alpha t}sin( \omega_0 t)]u(t)</math> || <math>\frac{\omega_0}{(s+\alpha)^{2}+\omega_0^{2}}</math> || <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha </math>
 +
|-
 +
| align="right" style="padding-right: 1em;"|15 || <math>u_n(t) = \frac{d^{n}\delta (t)}{dt^{n}}</math> || <math>\,\!s^{n}</math> || <math>All\,\, s</math>
 +
|-
 +
| align="right" style="padding-right: 1em;"|16 || <math>u_{-n}(t) = \underbrace{u(t) *\dots * u(t)}_{n\,\,times}</math> || <math>\frac{1}{s^{n}}</math> || <math>\mathcal{R} \mathfrak{e} \lbrace s \rbrace  > 0 </math>
 +
|}
 +
 
 +
 
 +
 
 +
 
 
*[[Laplace Pairs 1_ECE301Fall2008mboutin| (1)]]{{:Laplace Pairs 1_ECE301Fall2008mboutin}}
 
*[[Laplace Pairs 1_ECE301Fall2008mboutin| (1)]]{{:Laplace Pairs 1_ECE301Fall2008mboutin}}
 
*[[Laplace Pairs 2_ECE301Fall2008mboutin| (2)]]{{:Laplace Pairs 2_ECE301Fall2008mboutin}}
 
*[[Laplace Pairs 2_ECE301Fall2008mboutin| (2)]]{{:Laplace Pairs 2_ECE301Fall2008mboutin}}

Revision as of 04:39, 27 October 2009

Table of Laplace Transform Pairs

Laplace Transform Pairs
Transform Pair Signal Transform ROC
1 $ \,\!\delta(t) $ $ 1 $ $ All\,\, s $
2 $ \,\! u(t) $ $ \frac{1}{s} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
3 $ \,\! -u(-t) $ $ \frac{1}{s} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 $
4 $ \frac{t^{n-1}}{(n-1)!}u(t) $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
5 $ -\frac{t^{n-1}}{(n-1)!}u(-t) $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 $
6 $ \,\!e^{-\alpha t}u(t) $ $ \frac{1}{s+\alpha} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
7 $ \,\! -e^{-\alpha t}u(-t) $ $ \frac{1}{s+\alpha} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha $
8 $ \frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t) $ $ \frac{1}{(s+\alpha )^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
9 $ -\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t) $ $ \frac{1}{(s+\alpha )^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha $
10 $ \,\!\delta (t - T) $ $ \,\! e^{-sT} $ $ All\,\, s $
11 $ \,\![cos( \omega_0 t)]u(t) $ $ \frac{s}{s^2+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
12 $ \,\![sin( \omega_0 t)]u(t) $ $ \frac{\omega_0}{s^2+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
13 $ \,\![e^{-\alpha t}cos( \omega_0 t)]u(t) $ $ \frac{s+\alpha}{(s+\alpha)^{2}+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
14 $ \,\![e^{-\alpha t}sin( \omega_0 t)]u(t) $ $ \frac{\omega_0}{(s+\alpha)^{2}+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
15 $ u_n(t) = \frac{d^{n}\delta (t)}{dt^{n}} $ $ \,\!s^{n} $ $ All\,\, s $
16 $ u_{-n}(t) = \underbrace{u(t) *\dots * u(t)}_{n\,\,times} $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $



  • (1)$ \delta(t) \leftrightarrow 1 $, for all s
  • (2)$ \ u(t) \leftrightarrow \frac{1}{s} $, for Re{s} > 0
  • (3)$ \ -u(-t) \leftrightarrow \frac{1}{s} $, for Re{s} < 0
  • (4)$ \frac{t^{n - 1}}{(n - 1)!}u(t) \leftrightarrow \frac{1}{s^{n}} $, for Re{s} > 0
  • (5)$ - \frac{t^{n - 1}}{(n - 1)!}u(-t) \leftrightarrow \frac{1}{s^{n}} $, for Re{s} < 0
  • (6)$ \ e^{\alpha t }u(t) \leftrightarrow \frac{1}{s + \alpha} $, for Re{s} > $ \ - \alpha $
  • (7)$ \ -e^{\alpha t }u(-t) \leftrightarrow \frac{1}{s + \alpha} $, for Re{s} < $ \ - \alpha $



Back to Collective Table

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva