Line 3: Line 3:
 
== DFT ( Discrete Fourier Transform ) ==
 
== DFT ( Discrete Fourier Transform ) ==
  
 +
The DFT is a finite sum, so it can be computed using a computer.  Used for discrete, time-limited signals, or discrete periodic signals.
  
  
Line 9: Line 10:
  
 
'''DFT'''  
 
'''DFT'''  
*<math>X(k) = \sum_{n=0}^{N-1}{x[n]e^{-j2{\pi}kn/N}} k = 0, 1, 2, ..., N-1</math>
+
*<math>X(k) = \sum_{n=0}^{N-1}{x[n]e^{-j \frac{2{\pi}}{N}kn}}k = 0, 1, 2, ..., N-1</math>
  
 
'''Inverse DFT (IDFT)'''  
 
'''Inverse DFT (IDFT)'''  
*<math>x[n] = \frac{1}{N}\sum_{k=0}^{N-1}{X(k)e^{j2{\pi}kn/N}} n = 0, 1, 2, ..., N-1</math>
+
*<math>x[n] = \frac{1}{N}\sum_{k=0}^{N-1}{X(k)e^{j \frac{2{\pi}}{N}kn}}n = 0, 1, 2, ..., N-1</math>
 
[[ECE438_(BoutinFall2009)|Back to ECE438 course page]]
 
[[ECE438_(BoutinFall2009)|Back to ECE438 course page]]

Revision as of 09:01, 25 September 2009


DFT ( Discrete Fourier Transform )

The DFT is a finite sum, so it can be computed using a computer. Used for discrete, time-limited signals, or discrete periodic signals.


Definition

DFT

  • $ X(k) = \sum_{n=0}^{N-1}{x[n]e^{-j \frac{2{\pi}}{N}kn}}, k = 0, 1, 2, ..., N-1 $

Inverse DFT (IDFT)

  • $ x[n] = \frac{1}{N}\sum_{k=0}^{N-1}{X(k)e^{j \frac{2{\pi}}{N}kn}}, n = 0, 1, 2, ..., N-1 $

Back to ECE438 course page

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett