(New page: ==Fourier Transform and its basic Properties:== ===Fourier Transform:=== :<math>\ X(f) = \int_{-\infty}^{\infty} x(t)\ e^{- j 2 \pi f t}\,dt, </math>   ===Inverse Fourier Transform:...)
 
Line 2: Line 2:
  
 
===Fourier Transform:===
 
===Fourier Transform:===
:<math>\ X(f) = \int_{-\infty}^{\infty} x(t)\ e^{- j 2 \pi f t}\,dt, </math> &nbsp;
+
:<math>\ X(f) = \int_{-\infty}^{\infty} x(t)\ e^{- j 2 \pi f t}\,dt </math>
  
 
===Inverse Fourier Transform:===
 
===Inverse Fourier Transform:===
:<math>f(x) = \int_{-\infty}^{\infty} X(f)\ e^{j 2 \pi f t}\,df, </math> &nbsp;
+
:<math>f(x) = \int_{-\infty}^{\infty} X(f)\ e^{j 2 \pi f t}\,df </math>
 
                                                                                   for every real number ''f & x''.
 
                                                                                   for every real number ''f & x''.
  
 
==Basic Properties of Fourier Transforms:==
 
==Basic Properties of Fourier Transforms:==
  
Linearity:
+
Suppose ''a'' and ''b'' are any complexn numbers, if ''h(x)'' ''ƒ(x)'' and ''g(x)'' Fourier Transform to ''H(f)'' ''F(f)'' and ''G(f)'' respectively, then
  
Time Shifting:
+
Linearity:
 +
:If <math>\  h(x) = a.f(x) + b.g(x)</math> then <math>\ H(f)= a.F(f)+b.G(f)</math>
 +
 
 +
Time Shifting:  
 +
 
 +
:If <math>\ f(x)=g(x-x_0) </math> then <math>\ F(f)=e^{-2\pi i f x_0 }G(f)</math>
  
 
Frequency Shifting:
 
Frequency Shifting:
 +
 +
:If <math>\ f(x)= e^{2\pi i x f_0}g(x) </math> then <math>\ F(f)=G(f-f_0)</math>
  
 
Time Scaling:
 
Time Scaling:
 +
 +
:If <math>\ f(x)=g(ax) </math> then <math>\ F(f)=\frac{1}{|a|} G(\frac{f}{a})</math>
  
 
Convolution:
 
Convolution:

Revision as of 10:55, 23 September 2009

Fourier Transform and its basic Properties:

Fourier Transform:

$ \ X(f) = \int_{-\infty}^{\infty} x(t)\ e^{- j 2 \pi f t}\,dt $

Inverse Fourier Transform:

$ f(x) = \int_{-\infty}^{\infty} X(f)\ e^{j 2 \pi f t}\,df $
                                                                                 for every real number f & x.

Basic Properties of Fourier Transforms:

Suppose a and b are any complexn numbers, if h(x) ƒ(x) and g(x) Fourier Transform to H(f) F(f) and G(f) respectively, then

Linearity:

If $ \ h(x) = a.f(x) + b.g(x) $ then $ \ H(f)= a.F(f)+b.G(f) $

Time Shifting:

If $ \ f(x)=g(x-x_0) $ then $ \ F(f)=e^{-2\pi i f x_0 }G(f) $

Frequency Shifting:

If $ \ f(x)= e^{2\pi i x f_0}g(x) $ then $ \ F(f)=G(f-f_0) $

Time Scaling:

If $ \ f(x)=g(ax) $ then $ \ F(f)=\frac{1}{|a|} G(\frac{f}{a}) $

Convolution:

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett