Line 3: Line 3:
 
<math>x[n]= \frac{1}{2\prod j} \oint_C X(z) z^{n-1} dz \ </math>
 
<math>x[n]= \frac{1}{2\prod j} \oint_C X(z) z^{n-1} dz \ </math>
  
           <math>= \sum_ poles a_i of X(z) z^{n-1} \ </math> Residue <math>X(z) z^{n-1} \ </math>
+
           <math>= \sum_ {poles a_i of X(z) z^{n-1}} \ </math> Residue <math>X(z) z^{n-1} \ </math>
 
        
 
        
           <math>= \sum_ poles a_i of X(z) z^{n-1} \ </math> Coefficient of degree(-1) term  in the power expansion of <math>X(z) z^{n-1} \ </math> about <math>a_i</math>
+
           <math>= \sum_ {poles a_i of X(z) z^{n-1}} \ </math> Coefficient of degree(-1) term  in the power expansion of <math>X(z) z^{n-1} \ </math> about <math>a_i</math>
  
 
So inverting X(z) involves power series
 
So inverting X(z) involves power series

Revision as of 07:44, 23 September 2009

                                                 Inverse Z-transform

$ x[n]= \frac{1}{2\prod j} \oint_C X(z) z^{n-1} dz \ $

         $ = \sum_ {poles a_i of X(z) z^{n-1}} \  $ Residue $ X(z) z^{n-1} \  $
      
          $ = \sum_ {poles a_i of X(z) z^{n-1}} \  $ Coefficient of degree(-1) term  in the power expansion of $ X(z) z^{n-1} \  $ about $ a_i $

So inverting X(z) involves power series

$ f(x)= \sum_{n =-\infty}^{\infty} frac {f^{n} x_0 (x-x_0)^{n} {n!} \ $

$ \frac{1}{1-x} = \sum_{n =-\infty}^{\infty} x^{n} \ $ , geometric series when |x|< 1

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett