Line 68: Line 68:
  
 
       <math>= \frac {-1}{z} \sum_{n=0}^\infty  (\frac {1}{z})^{n} \ </math>
 
       <math>= \frac {-1}{z} \sum_{n=0}^\infty  (\frac {1}{z})^{n} \ </math>
 +
 +
      <math>= - \sum_{n=0}^\infty z^{-n-1} \ </math>

Revision as of 07:08, 23 September 2009

                                                  Inverse Z-transform
$  x[n] = \oint_C {X(Z)} {Z ^ {n-1}} , dZ \  $
where C is a closed counterwise countour inside the ROC of the Z- transform and around the origin.
            $  = \sum_{poles  a_i ( X(Z)  Z ^ {n-1})}  Residue ( X(Z)  Z ^ {n-1}) \  $
            $  = \sum_{poles  a_i ( X(Z)  Z ^ {n-1})} \  $  Coefficient of degree (-1) term on the power series expansion of $  ( X(Z)  Z ^ {n-1}) \  $  $  about a_i \  $


So inverting X(Z) involves power series.


$ f(X)= \sum_{n=0}^\infty \frac{f^n (X_0) (X-X_0)^{n}}{n!} \ $ , near $ X_0 $

$ \frac{1}{(1-x)} = \sum_{n=0}^\infty X^n \ $ , geometric series where |X|=1


Computing equivalent to complex integration formula's

1) Write X(Z) as a power series.

$ X(Z) = \sum_{n=-\infty}^{\infty} \ C_n Z^n \ $ , series must converge for all Z's on the ROC of X(Z)

2) Observe that

$ X(Z) = \sum_{n=-\infty}^{\infty} \ x[n] Z^{-n} \ $

i.e.,

$ X(Z) = \sum_{n=-\infty}^{\infty} \ x[-n] Z^n \ $

3) By comparison

$ X[-n] = \ C_n \ $

or

$ X[n] = \ C_ -n $



Example 1:

$ X(z) = \frac{1}{(1-z)} \ $

Two possible ROC

Case 1: |z|<1

$ X(z) = \sum_{n=0}^\infty z^n \ $

   $   =  \sum_{k=-\infty}^{0} \ z^{-k} \  $
    $  =  \sum_{n=-\infty}^{\infty} \ u(-k) z^{-k} \  $

so, x[n]=u[-n]

Consistent as having inside a circle as ROC.

Case 2: |z|>1

$ X(z) = \frac{1}{(1-z)} \ $

   $  = \frac{1}{z(\frac{1}{z}-1)} \  $
    $ = \frac {-1}{z} {\frac{1}{1-\frac{1}{z}}} \  $,    observe $ \ |\frac {1}{z}|< 1 \  $
Now by using the geometric series formula, the series can be formed as 
      $ = \frac {-1}{z} \sum_{n=0}^\infty  (\frac {1}{z})^{n} \  $
      $ = - \sum_{n=0}^\infty z^{-n-1} \  $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood