(New page: Back to ECE438 course page ==Short Cut: Completely equivalent to complex integration formula== 1.) Write X(z) as a power series <math>X(z) = \sum_{n=-\infty}...) |
|||
Line 24: | Line 24: | ||
==Example:== | ==Example:== | ||
− | <math>X(z) = | + | <math>X(z) = \frac{1}{1-z}</math> |
+ | Observe pole at z = 1 | ||
+ | |||
+ | There are 2 possible ROC's: | ||
+ | |z| < 1 or |z| > 1 | ||
+ | |||
+ | Case 1: |z| < 1 (inside circle -- left sided function) | ||
+ | |||
+ | <math>X(z) = \sum_{n=0}^{\infty}z^{n} = \sum_{k=-\infty}^{0}z^{-k} = \sum_{k=-\infty}^{\infty}u(-k)z^{-k}</math> | ||
+ | |||
+ | So, x[n] = u[-n] | ||
+ | --left-sided, consistent with having inside of a circle ROC | ||
+ | |||
+ | |||
+ | Case 2: |z| > 1 | ||
+ | |||
+ | <math>X(z) = \frac{1}{1-z} = \frac{1}{z((\frac{1}{z})-z)} = \frac{-1}{z}*\frac{1}{1-(\frac{1}{z})}</math> | ||
+ | |||
+ | Observe, |1/z| < 1, thus we can use geometric series | ||
+ | Continuing from above, | ||
+ | |||
+ | <math>=\frac{-1}{z}\sum_{n=0}^{\infty}(\frac{1}{z})^{n}=-\sum_{n=0}^{\infty}z^{-n-1}</math> | ||
+ | |||
+ | Let k = n + 1 | ||
+ | |||
+ | <math>=-\sum_{k=1}^{\infty}z^{-k}=\sum_{k=-\infty}^{\infty}-u(k-1)z^{-k}</math> | ||
+ | |||
+ | By comparison with Z-Transform formula, x[n] = -u[n-1] | ||
+ | --right-sided function, consistent with having outside of circle ROC |
Revision as of 05:59, 23 September 2009
Short Cut: Completely equivalent to complex integration formula
1.) Write X(z) as a power series
$ X(z) = \sum_{n=-\infty}^{\infty}x[n]z^{-n} $
2.) Observe that
$ X(z) = \sum_{n=-\infty}^{\infty}x[n]z^{-n} $
i.e.
$ X(z) = \sum_{n=-\infty}^{\infty}x[-n]z^{n} $
3.) By comparison,
$ x[-n] = c_{n} $
or
$ x[n] = c_{-n} $
Example:
$ X(z) = \frac{1}{1-z} $ Observe pole at z = 1
There are 2 possible ROC's: |z| < 1 or |z| > 1
Case 1: |z| < 1 (inside circle -- left sided function)
$ X(z) = \sum_{n=0}^{\infty}z^{n} = \sum_{k=-\infty}^{0}z^{-k} = \sum_{k=-\infty}^{\infty}u(-k)z^{-k} $
So, x[n] = u[-n] --left-sided, consistent with having inside of a circle ROC
Case 2: |z| > 1
$ X(z) = \frac{1}{1-z} = \frac{1}{z((\frac{1}{z})-z)} = \frac{-1}{z}*\frac{1}{1-(\frac{1}{z})} $
Observe, |1/z| < 1, thus we can use geometric series Continuing from above,
$ =\frac{-1}{z}\sum_{n=0}^{\infty}(\frac{1}{z})^{n}=-\sum_{n=0}^{\infty}z^{-n-1} $
Let k = n + 1
$ =-\sum_{k=1}^{\infty}z^{-k}=\sum_{k=-\infty}^{\infty}-u(k-1)z^{-k} $
By comparison with Z-Transform formula, x[n] = -u[n-1] --right-sided function, consistent with having outside of circle ROC