Line 5: Line 5:
 
'''PROOF:''' Look at the graph of '''<math>X_s(f)\,\!</math>'''
 
'''PROOF:''' Look at the graph of '''<math>X_s(f)\,\!</math>'''
  
*** Image goes here***
+
<math>*** Image \quad goes \quad here***\,\!</math>
  
 
To avoid aliasing,  
 
To avoid aliasing,  
Line 15: Line 15:
 
Let '''<math>x_r(t)\,\!</math>''' be the reconstructed signal. Then,
 
Let '''<math>x_r(t)\,\!</math>''' be the reconstructed signal. Then,
  
'''<math>X_(f) = H_r(f)X_s(f)\,\!</math>'''
+
'''<math>X_(f) = H_r(f) X_s(f)\,\!</math>'''
  
 
where,  
 
where,  
Line 22: Line 22:
  
 
So,
 
So,
 +
<div style="margin-left: 3em;">
 +
<math>
 +
\begin{align}
 +
x_r(t) &= h_r(t) * X_s(t) \\
 +
&= sinc \left (\frac{t}{T}\right) * \sum_k X(kT) \delta(t-kT) \\
 +
&= \sum_k X(kT) sinc \left (\frac{t}{T}\right) *  \delta(t-kT) \\
 +
&= \sum_k X(kT) sinc \left (\frac{t - kT}{T}\right)\\
 +
\end{align}
 +
</math>
 +
</div>
  
'''<math>x_r(t) = h_r(t) * X_s(t)\,\!</math>'''
+
Recall,  <math>\quad sinc(x) = 0 \quad \iff \quad x = \pm 1, \pm 2, \pm 3 ... \,\!</math>
 +
 
 +
 
 +
<math>*** Image \quad goes \quad here***\,\!</math>
 +
 
 +
At all integer multiples of T,
 +
 
 +
<math>x_r(nT) = X(nT)\,\!</math>
 +
 
 +
If Nyquist is satisfied, <math>\quad x_r(nT) = X(nT)\quad \forall \quad 't'\,\!</math>

Revision as of 04:45, 23 September 2009

LECTURE on September 11, 2009

The perfect reconstruction of $ {x(t)}\,\! $ from $ x_s(t)\,\! $ is possible if $ X(f) = 0\,\! $ when $ |f| \ge \frac{1}{|2T|} $

PROOF: Look at the graph of $ X_s(f)\,\! $

$ *** Image \quad goes \quad here***\,\! $

To avoid aliasing,

$ \frac{1}{T}\ - f_M \ge f_M $ $ \quad\iff\quad $ $ \frac{1}{T}\ \ge 2f_M $

To recover the signal, we will require a low pass filter with gain $ T\,\! $ and cutoff, $ \frac{1}{2T} $

Let $ x_r(t)\,\! $ be the reconstructed signal. Then,

$ X_(f) = H_r(f) X_s(f)\,\! $

where,

$ H_r(f) = T rect(f)\,\! $

So,

$ \begin{align} x_r(t) &= h_r(t) * X_s(t) \\ &= sinc \left (\frac{t}{T}\right) * \sum_k X(kT) \delta(t-kT) \\ &= \sum_k X(kT) sinc \left (\frac{t}{T}\right) * \delta(t-kT) \\ &= \sum_k X(kT) sinc \left (\frac{t - kT}{T}\right)\\ \end{align} $

Recall, $ \quad sinc(x) = 0 \quad \iff \quad x = \pm 1, \pm 2, \pm 3 ... \,\! $


$ *** Image \quad goes \quad here***\,\! $

At all integer multiples of T,

$ x_r(nT) = X(nT)\,\! $

If Nyquist is satisfied, $ \quad x_r(nT) = X(nT)\quad \forall \quad 't'\,\! $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett