Line 1: Line 1:
 
== LECTURE on September 11, 2009 ==
 
== LECTURE on September 11, 2009 ==
  
The perfect reconstruction of '''<math>{x(t)}</math>''' from '''<math>x_s(t)</math>''' is possible if '''<math>X(f) = 0</math>''' when '''<math>|f| \ge \frac{1}{|2T|}</math>'''
+
The perfect reconstruction of '''<math>{x(t)}\,\!</math>''' from '''<math>x_s(t)\,\!</math>''' is possible if '''<math>X(f) = 0\,\!</math>''' when '''<math>|f| \ge \frac{1}{|2T|}</math>'''
  
'''PROOF:''' Look at the graph of '''<math>X_s(f)</math>'''
+
'''PROOF:''' Look at the graph of '''<math>X_s(f)\,\!</math>'''
  
 
*** Image goes here***
 
*** Image goes here***
Line 9: Line 9:
 
To avoid aliasing,  
 
To avoid aliasing,  
  
'''<math>\frac{1}{T}\ - f_M \ge f_M</math>'''    '''<math>\iff</math>'''    '''<math>\frac{1}{T}\ \ge 2f_M</math>'''
+
'''<math>\frac{1}{T}\ - f_M \ge f_M</math>'''    '''<math>\quad\iff\quad</math>'''    '''<math>\frac{1}{T}\ \ge 2f_M</math>'''
  
To recover the signal, we will require a low pass filter with gain '''<math>T</math>''' and cutoff, '''<math>\frac{1}{2T}</math>'''
+
To recover the signal, we will require a low pass filter with gain '''<math>T\,\!</math>''' and cutoff, '''<math>\frac{1}{2T}</math>'''
 +
 
 +
Let '''<math>x_r(t)\,\!</math>''' be the reconstructed signal. Then,
 +
 
 +
'''<math>X_(f) = H_r(f)X_s(f)\,\!</math>'''
 +
 
 +
where,
 +
 
 +
'''<math>H_r(f) = T rect(f)\,\!</math>'''
 +
 
 +
So,
 +
 
 +
'''<math>x_r(t) = h_r(t) * X_s(t)\,\!</math>'''

Revision as of 04:20, 23 September 2009

LECTURE on September 11, 2009

The perfect reconstruction of $ {x(t)}\,\! $ from $ x_s(t)\,\! $ is possible if $ X(f) = 0\,\! $ when $ |f| \ge \frac{1}{|2T|} $

PROOF: Look at the graph of $ X_s(f)\,\! $

      • Image goes here***

To avoid aliasing,

$ \frac{1}{T}\ - f_M \ge f_M $ $ \quad\iff\quad $ $ \frac{1}{T}\ \ge 2f_M $

To recover the signal, we will require a low pass filter with gain $ T\,\! $ and cutoff, $ \frac{1}{2T} $

Let $ x_r(t)\,\! $ be the reconstructed signal. Then,

$ X_(f) = H_r(f)X_s(f)\,\! $

where,

$ H_r(f) = T rect(f)\,\! $

So,

$ x_r(t) = h_r(t) * X_s(t)\,\! $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett