(New page: Category:MA425Fall2009 ==Homework 4== [http://www.math.purdue.edu/~bell/MA425/hwk4.txt HWK 4 problems])
 
Line 4: Line 4:
  
 
[http://www.math.purdue.edu/~bell/MA425/hwk4.txt HWK 4 problems]
 
[http://www.math.purdue.edu/~bell/MA425/hwk4.txt HWK 4 problems]
 +
 +
Hint for IV.6.3 --[[User:Bell|Steve Bell]]
 +
 +
We assume <math>f''=f</math> on <math>\mathbb C</math>.
 +
 +
Notice that
 +
 +
<math>(e^z f)''=e^zf +2e^zf'+e^zf''=2(e^zf + e^zf')=(e^zf)'.</math>
 +
 +
Let <math>g=e^zf.</math>

Revision as of 03:36, 23 September 2009


Homework 4

HWK 4 problems

Hint for IV.6.3 --Steve Bell

We assume $ f''=f $ on $ \mathbb C $.

Notice that

$ (e^z f)''=e^zf +2e^zf'+e^zf''=2(e^zf + e^zf')=(e^zf)'. $

Let $ g=e^zf. $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal