(New page: == == Discrete Fourier Transform == == == definition == Let X[n] be a DT signal with period N DFT <math> X [k] = \sum_{k=0}^{N-1} x[n].e^{-J.2pi.kn/N}</math> IDFT <math> x [n] = (...) |
|||
Line 1: | Line 1: | ||
− | + | === Discrete Fourier Transform === | |
− | + | ||
Line 9: | Line 8: | ||
Let X[n] be a DT signal with period N | Let X[n] be a DT signal with period N | ||
− | DFT | + | DFT |
+ | |||
<math> X [k] = \sum_{k=0}^{N-1} x[n].e^{-J.2pi.kn/N}</math> | <math> X [k] = \sum_{k=0}^{N-1} x[n].e^{-J.2pi.kn/N}</math> | ||
IDFT | IDFT | ||
+ | |||
<math> x [n] = (1/N) \sum_{k=0}^{N-1} X[k].e^{J.2pi.kn/N}</math> | <math> x [n] = (1/N) \sum_{k=0}^{N-1} X[k].e^{J.2pi.kn/N}</math> | ||
== Derivation == | == Derivation == |
Revision as of 21:07, 22 September 2009
Discrete Fourier Transform
definition
Let X[n] be a DT signal with period N
DFT
$ X [k] = \sum_{k=0}^{N-1} x[n].e^{-J.2pi.kn/N} $
IDFT
$ x [n] = (1/N) \sum_{k=0}^{N-1} X[k].e^{J.2pi.kn/N} $