Line 2: Line 2:
  
 
==Scaling of the Dirac Delta (Impulse Function)==
 
==Scaling of the Dirac Delta (Impulse Function)==
<math>\displaystyle\delta(\alpha f)=\frac{1}{\alpha}\delta(f)\;\;\;\;\;\;\;for\;\;\alpha>0</math>
+
<math>\displaystyle\delta(\alpha f)=\frac{1}{\alpha}\delta(f)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;for\;\;\alpha>0</math>
  
 
'''Mini Proof'''
 
'''Mini Proof'''
Line 8: Line 8:
 
<math>\int_{-\infty}^{\infty}\delta(x)dx = 1</math>
 
<math>\int_{-\infty}^{\infty}\delta(x)dx = 1</math>
  
'''Let''' <math>\displaystyle y=\alpha x</math>               
+
'''Let''' <math>\displaystyle y=\alpha x\;\;\;\;\;\;\;\;\;\;\;\;\;dx=\frac{dy}{\alpha}</math>              
 
+
<math>dx=\frac{dy}{\alpha}</math>
+
  
 
<math>\displaystyle\int_{-\infty}^{\infty}\delta(\alpha x)dx=\int_{-\infty}^{\infty}\delta(y)\frac{dy}{\alpha}=\frac{1}{\alpha}</math>
 
<math>\displaystyle\int_{-\infty}^{\infty}\delta(\alpha x)dx=\int_{-\infty}^{\infty}\delta(y)\frac{dy}{\alpha}=\frac{1}{\alpha}</math>

Revision as of 07:44, 20 September 2009

Back to ECE438 course page

Scaling of the Dirac Delta (Impulse Function)

$ \displaystyle\delta(\alpha f)=\frac{1}{\alpha}\delta(f)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;for\;\;\alpha>0 $

Mini Proof

$ \int_{-\infty}^{\infty}\delta(x)dx = 1 $

Let $ \displaystyle y=\alpha x\;\;\;\;\;\;\;\;\;\;\;\;\;dx=\frac{dy}{\alpha} $

$ \displaystyle\int_{-\infty}^{\infty}\delta(\alpha x)dx=\int_{-\infty}^{\infty}\delta(y)\frac{dy}{\alpha}=\frac{1}{\alpha} $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn