Line 4: Line 4:
  
  
'''Definition'''
 
  
DFT
+
== Definition ==
<math>X(k) = \sum_{n=0}^{N-1}{x[n]e^{-j2{\pi}kn/N}} k = 0, 1, 2, ..., N-1</math>
+
  
Inverse DFT (IDFT)  
+
 
<math>x[n] = \sum_{k=0}^{N-1}{X(k)e^{j2{\pi}kn/N}} n = 0, 1, 2, ..., N-1</math>
+
'''DFT'''
 +
*<math>X(k) = \sum_{n=0}^{N-1}{x[n]e^{-j2{\pi}kn/N}} k = 0, 1, 2, ..., N-1</math>
 +
 
 +
'''Inverse DFT (IDFT)'''
 +
*<math>x[n] = \frac{1}{N}\sum_{k=0}^{N-1}{X(k)e^{j2{\pi}kn/N}} n = 0, 1, 2, ..., N-1</math>
 
[[ECE438_(BoutinFall2009)|Back to ECE438 course page]]
 
[[ECE438_(BoutinFall2009)|Back to ECE438 course page]]

Revision as of 16:57, 18 September 2009


DFT ( Discrete Fourier Transform )

Definition

DFT

  • $ X(k) = \sum_{n=0}^{N-1}{x[n]e^{-j2{\pi}kn/N}} k = 0, 1, 2, ..., N-1 $

Inverse DFT (IDFT)

  • $ x[n] = \frac{1}{N}\sum_{k=0}^{N-1}{X(k)e^{j2{\pi}kn/N}} n = 0, 1, 2, ..., N-1 $

Back to ECE438 course page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett