Line 4: | Line 4: | ||
− | |||
− | + | == Definition == | |
− | + | ||
− | Inverse DFT (IDFT) | + | |
− | <math>x[n] = \sum_{k=0}^{N-1}{X(k)e^{j2{\pi}kn/N}} n = 0, 1, 2, ..., N-1</math> | + | '''DFT''' |
+ | *<math>X(k) = \sum_{n=0}^{N-1}{x[n]e^{-j2{\pi}kn/N}} k = 0, 1, 2, ..., N-1</math> | ||
+ | |||
+ | '''Inverse DFT (IDFT)''' | ||
+ | *<math>x[n] = \frac{1}{N}\sum_{k=0}^{N-1}{X(k)e^{j2{\pi}kn/N}} n = 0, 1, 2, ..., N-1</math> | ||
[[ECE438_(BoutinFall2009)|Back to ECE438 course page]] | [[ECE438_(BoutinFall2009)|Back to ECE438 course page]] |
Revision as of 16:57, 18 September 2009
DFT ( Discrete Fourier Transform )
Definition
DFT
- $ X(k) = \sum_{n=0}^{N-1}{x[n]e^{-j2{\pi}kn/N}} k = 0, 1, 2, ..., N-1 $
Inverse DFT (IDFT)
- $ x[n] = \frac{1}{N}\sum_{k=0}^{N-1}{X(k)e^{j2{\pi}kn/N}} n = 0, 1, 2, ..., N-1 $